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Abstract 

The effects of the CdCl2 passivation treatment on thin-film CdTe photovoltaic films and devices have 

been extensively studied. Recently, with an addition of CdSeTe layer at the front of the absorber layer, 

device conversion efficiencies in excess of 19% have been demonstrated. The effects of the CdCl2 

passivation treatment for devices using CdSeTe has not been studied previously. This is the first 

reported study of the effect of the treatment on the microstructure of the CdSeTe /CdTe absorber.  The 

device efficiency is <1% for the as-deposited device but this is dramatically increased by the CdCl2 

treatment. Using Scanning Transmission Electron Microscopy (STEM), we show that the CdCl2 

passivation of CdSeTe/CdTe films results in the removal of high densities of stacking faults and increase 

and reorientation of grains. The CdCl2 treatment leads to grading of the absorber CdSeTe/CdTe films by 

diffusion of Se between the CdSeTe and CdTe regions. Chlorine decorates the CdSeTe and CdTe grain 

boundaries leading to their passivation.  Direct evidence for these effects is presented using STEM and 

Energy Dispersive X-ray Analysis (EDX) on device cross-sections prepared using focused ion beam 

etching.  The grading of the Se in the device is quantified using EDX line scans.  The comparison of 

CdSeTe/CdTe device microstructure and composition before and after the CdCl2 treatment provides 

insights into the important effects of the process and points the way to further improvements that can 

be made. 

  



Introduction 

Thin Film CdTe based photovoltaics have recently demonstrated lowest cost of electricity for 

utility scale energy generation. The technology is recognized to be an important contributor to the 

global need for sustainable renewable energy. The technology is  low cost and has proven industrial 

scalability [1]. With improvements in fabrication processes, research scale small devices with device 

efficiency up to 22.1% [2] have been reported while commercial module efficiencies of 18.6% [3] have 

been achieved. The average efficiency of commercial production modules has increased from 13.5% to 

16.2% between 2014 and 2016 [4], [5]. Device efficiency has been improved recently by modifying the 

cell architecture by introducing new materials into the buffer layer and into the absorber.  These 

modifications have not resulted in increased manufacturing complexity or cost.  The most significant 

improvement has involved the introduction of Se to form a CdSeTe layer at the interface with an 

intrinsic but fully transparent buffer layer such as magnesium doped zinc oxide (MZO).  These devices 

have demonstrated a conversion efficiency above 19% with short-circuit current density (JSC) of over 28 

mA/cm2 [6]. Devices fabricated using a CdTe-only absorber using similar fabrication conditions with 

efficiency 18.6% have been reported by the authors [7]. This suggests incorporation of Se is an 

important improvement in device fabrication technology. Optimization of the CdSeTe/CdTe absorber is 

required to further optimize the composition of these films and achieve improvement in device 

efficiency. It is important to understand the behavior of these CdSeTe/CdTe films under processing 

conditions.  It is well known that the cadmium chloride annealing process is vital to obtain good 

efficiencies with conventional CdS/CdTe devices.  Here we report on the effects of the treatment on the 

microstructure and composition of CdSeTe/CdTe devices and relate these effects to device performance 

using direct evidence from device cross sections investigated using Scanning Transmission Electron 

Microscopy (STEM) and Energy Dispersive X-ray Analysis (EDS).     

In this study, two thin-film devices were deposited with CdSeTe and CdTe using sublimation 

under identical process conditions. One as deposited device was characterized while the second device 

was treated with CdCl2 and then characterized. The CdCl2 treatment is a critical process step in 

fabrication of high efficiency CdTe photovoltaic devices [8], [9]. In this study cross–sections of the 

CdSeTe/CdTe devices, as deposited and CdCl2 treated, were analyzed using cross-section scanning 

transmission electron microscope (STEM) imaging, energy dispersive X-ray spectroscopy (EDS) elemental 

mapping, EDS line scans and EDS selected area analysis. In addition, the electrical performance of these 

research scale small devices was obtained to correlate with the structural analyses. The analysis of these 

devices show similar behavior between the CdSeTe/CdTe graded absorber devices and the CdTe-only 

devices. Effect of CdCl2 passivation treatment on grain structure of these films is thoroughly studied. The 

CdCl2 passivation treatment also causes removal of stacking faults in CdSeTe as previously observed in 

CdTe films. Elemental analysis of fabricated films using cross-section TEM and EDS is used to understand 

the effect of CdCl2 treatment on material composition of the film.  Behavior of chlorine observed in 

CdSeTe/CdTe films with CdCl2 is similar to CdTe-only films [10]. Electrical characterization of these 

devices shows a steep improvement in device performance after the CdCl2 passivation treatment.  

 

 



Experimental 

The cells used in the study were deposited on NSG TEC 10 soda lime glass coated with fluorine-

doped tin oxide (FTO) to function as a transparent conducting oxide (TCO). A 100 nm thick MgxZn1-xO 

(MZO) buffer layer was deposited using RF sputter deposition [11], [12]. Identical CdSeTe films were 

sublimated on 2 TEC 10 glass substrates that were coated with MZO using an optimized deposition 

process followed by sublimation of the CdTe layer.  On one of these substrates, CdSexTe1-x (CdSeTe) and 

CdTe depositions were followed by CdCl2 passivation, performed in-line without breaking vacuum. The 

substrate was heated to ~530ºC before starting the sublimation of CdSeTe. The temperature of the 

substrate was measured in-situ using a pyrometer located outside the pre-heating station. The thin-films 

for this study were deposited using the advanced deposition system with 9 process stations at Colorado 

State University previously optimized for fabrication of CdTe based thin-film devices [13].  

The CdSeTe composition used for this study had 40% CdSe in the source material and the as-

deposited films had a band-gap of ~1.41 eV measured using optical transmission measurements and the 

Tauc plot method. The CdSeTe vapor source was heated to 575ºC while the substrate heater was 

maintained at 420ºC and CdSeTe films of ~1.5 - 2.0 µm thickness were deposited. After deposition of 

CdSeTe, the substrate was moved to the CdTe sublimation vapor source and a film ~3.5 µm thick was 

deposited. The total thickness of CdSeTe and CdTe film stack was measured to be ~5 µm using a 

profilometer. The CdTe sublimation source temperature was maintained at 555ºC and the substrate 

heater for this source was maintained at 500ºC. One of the substrates was moved to the CdCl2 vapor 

passivation treatment station in-situ without breaking vacuum after the CdTe film deposition. The CdCl2 

sublimation source was maintained at 447ºC while the substrate heater for this source was heated to 

430ºC. The CdCl2 passivation treatment was performed for 600 seconds. These temperatures were 

determined after several experimental iterations to optimize the CdCl2 treatment such that at the end of 

the 600 seconds treatment there was a thin film of CdCl2 deposited on the substrate. Following the CdCl2 

passivation treatment, the substrate was moved to a cooling station without any active heating and 

allowed to cool for 180 seconds. No post CdCl2 treatment annealing was performed during this 

experiment. After this process step, the substrate was removed from the vacuum chamber and the 

residual CdCl2 film was rinsed using de-ionized water.    

Thereafter, the films were heated to ~140ºC, and CuCl was deposited on the film surface for 110 

seconds. This was followed by 220 seconds of annealing at 220ºC, both in vacuum, to form a Cu doped 

back contact. A ~30-nm Te film was evaporated to improve the back-contact [14]. After the deposition 

of Te, the substrates were cut in half. One half was used for materials characterization using TEM and 

TEM/EDS.  Carbon and nickel paint in a polymer binder was sprayed on the second half of these films to 

form the back electrode. These halves with carbon and nickel back electrode were masked and 

delineated to form 10 small scale devices with an area of ~0.55 cm2, that were tested for electrical 

performance using  current density vs voltage measurements using a 1.5 AM spectrum. ABET 

Technologies 10500 solar simulator with uniform illumination accessory was used to illuminate the 

devices for measurements. The lamp used for illumination as ozone free DC xenon arc lamp that 

produces 1Sun power output over 35mm diameter field and, met ASTM, IEC and JIS Class A AM1.5G 

output requirements. Current density v/s voltage curves were generated based on electrical 

measurements performed using Keithley 2420 SourceMeter controlled by a LabView program. Short-



circuit current density was calibrated to cells measured by NREL. Device areas are measured using a 

webcam that takes an image of a backlit solar cell and counts the pixels below certain brightness. Both 

the light intensity and area are calibrated for each set of measurements. The cells are contacted by a 

fixture of spring loaded gold pins that provide 4-point connection and collect current from all around the 

front contact of the device. The setup accurately measures the J-V parameters and the agreement of 

these measurements with an externally certified photovoltaic device is shown in the supplementary 

section.  

Specimen foils for scanning transmission electron microscopy (STEM) were prepared using an 

FEI focused ion beam (FIB) dual beam system using a standard in-situ lift out method [7]. STEM 

specimen preparation and imaging were performed at Loughborough University, U.K. STEM imaging was 

performed using a FEI Tecnai F20 S/TEM equipped with Gatan Bright and Dark field STEM detectors, 

Fischione High Angle Annular Dark Field (HAADF) STEM detector and an Oxford Instruments X-Max 

80mm2 windowless energy-dispersive spectrometer (EDX). STEM imaging was performed at 200 kV with 

a camera length of 100 mm and condenser aperture size of 70 μm using a spot size of 7. Such an 

aperture size provides a good resolution with lower depth of field. However, the specimen being thin 

TEM specimen lower depth of field does not affect the image quality. HAADF images were collected in 

conjunction with STEM bright field images. HAADF imaging gave a unique perspective as the higher the 

atomic weight of the material, the more the electrons pass through the sample to be detected. 

Therefore the amount of signal collected depends on the atomic weights of the elements within the 

sample, providing atomic weight contrast in the image. 

 The STEM system was equipped with a Silicon Drift Detector (SDD) allowing high spatial 

resolution Energy Dispersive X-ray (EDX) measurements and chemical mapping. This was useful to map 

the diffusion of elements such as chlorine and selenium in the absorber matrix. EDX spectra were 

collected for 120 seconds. Elemental maps were collected using the largest condenser aperture (150 

Fig. 1. (A) Cross-section bright field image of as deposited CdSeTe/CdTe film (B) Cross-section dark field image 

of as deposited CdSeTe/CdTe film (C) Cross section bright field image of CdSeTe/CdTe film after CdCl2 

passivation (D) Cross section dark field image of CdSeTe/CdTe film after CdCl2 passivation  



μm) with the largest spot size. Strength of condenser lens controls probe size and final probe current. 

Larger condenser aperture allows more current to pass through to become probe current on the 

specimen. Large condenser aperture and spot size were used to achieve high EDS output signal while 

maintaining lower dead time. The dead time was further controlled by changing the process time; each 

frame took approximately 120 seconds to collect. Maps were collected from 10 minutes up to 1 hour 

with no discernible sample drift. 

Characterization 

 Cross-sections of as deposited CdSeTe/CdTe films and devices following the CdCl2 passivation 

treatment were imaged using STEM (figure 1). Figure 1A shows the grain structure of an as deposited 

CdSeTe/CdTe absorber layer. Large number of small grains can be observed near the CdSeTe/CdTe and 

MZO interfaces. In the as-deposited film, the CdSeTe grains are small at the CdSeTe/MZO interface, and 

grow progressively larger as the distance from the interface increases. It is also notable that before CdCl2 

A B 
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Fig. 2. (A) Cross-section STEM/EDS maps showing elemental distribution in as deposited CdSeTe/CdTe films (B) 

Cross-section STEM/EDS map showing elemental distribution in CdSeTe/CdTe films after CdCl2 passivation 

treatment (C) Higher magnification elemental maps of the area rich in Se as marked in figure B. 



passivation treatment, the grains contain a high density of stacking faults [15].  Numerous voids are 

observed between the grains. There are no voids visible at the interface of the CdSeTe/CdTe absorber 

and the MZO buffer layer. In addition, no voids or physical degradation of MZO film is observed before 

or after CdCl2 passivation treatment. The MZO is a continuous film conformal to the underlying TCO 

layer. Voids in the absorber layer are more distinctly visible in the dark-field image.  

 Figure 1C and 1D show cross-sections of the CdSeTe/CdTe absorber device that has been 

passivated using the CdCl2 treatment. The bright-field image in figure 1C shows grain growth in the 

absorber film and particularly in the CdSeTe.  No small grains are observed at the interface of 

CdSeTe/CdTe absorber and the MZO buffer layer. In addition, no stacking faults are now visible in these 

films, however, twin-boundaries are observed in most of the grains. Figure 1c and 1d show that most of 

the voids present before passivation treatment have been removed and no voids are seen at the 

interface of CdSeTe/CdTe absorber and MZO buffer. From figure 1D it can also be observed that the 

MZO layer is not depleted and is conformal over the underlying TCO. The interface between the 

absorber and the buffer layer is abrupt with no evidence of intermixing between these layers.  

   To further understand the effect of the CdCl2 treatment on the CdSeTe/CdTe devices, cross-

section specimens were used to obtain elemental maps using energy dispersive X-ray spectroscopy 

(EDS). It is important to note that colors used for EDS elemental maps are arbitrary and colors 

themselves do not have any particular significance. Prior to the CdCl2 passivation, the as deposited films 

have a distinct CdSeTe layer as shown in figure 2A as can be observed from Se as well as Te elemental 

Fig. 3. (A) Cross-section STEM/EDS line scan showing elemental profile in as deposited CdSeTe/CdTe films (B) Cross-

section STEM/EDS line scan showing elemental profile in CdSeTe/CdTe films after the CdCl2 passivation treatment (C) 

Comparison of Se profile in as deposited CdSeTe/CdTe films and in films after the CdCl2 passivation treatment.  



maps. Distinct layers of CdSeTe and CdTe are observed with no evidence of diffusion between these 

layers during the deposition process. After the CdCl2 treatment, observing Se elemental map the film 

shows grading of the CdSeTe into the CdTe layer (figure 2b). No distinct interface exists between the 

CdSeTe and CdTe after CdCl2 treatment. It should be noted that the strong Selenium signal found at the 

top of the Se maps in figures 2A and 2B is in actuality the signal from platinum, only applied to the 

samples during TEM sample preparation. Figure 2C shows the graded region of the film in greater detail.  

While diffusion of Se into the CdTe layer is clear, the MgZnO layer is unaffected and remains intact. No 

degradation of the MZO buffer occurs during the processing of these films. Cl is observed to decorate 

Fig. 4. (A) Selected areas scanned to determine the Se composition in the as deposited CdSeTe and CdSe films (B) 

Part of the film graded with Se analyzed by scanning 4 selected areas across the film.   

2.5 µm 

1 µm 



the grain boundaries and the MZO/CdSeTe interface. No Cl within detection limits of EDS is observed at 

the MZO/TCO interface; however, some Cl does appear to diffuse between the MZO grains.  The TCO 

acts as a barrier to the further diffusion of Chlorine.   

 For a detailed understanding of diffusion profiles of the CdSeTe and CdTe films, EDS line scans 

were performed and these are shown in figure 3. Se is clearly observed to replace Te in the film while Cd 

remains unaffected. In figure 3B, a sharp pickup in Te towards the contact at the back of the film. This is 

due to a thin film of Te deposited at the back surface to improve the back contact. A comparison of the 

Se profile in the two films confirms that the Se is diffused into the CdTe layer following the CdCl2 treated 

film. The untreated film appears to be slightly graded and Se composition does not appear to drop 

abruptly as observed in the EDS elemental maps. To verify if this is an artifact of beam size and scan 

area, the films are further investigated in figure 4.  

Figure 4A supports the earlier observation from the EDS elemental map and line scans that the 

as deposited CdSeTe film has ~10% atomic composition of Se while the region scanned immediately on 

top of the CdSeTe film within the CdTe layer has no detectable levels of Se. This suggests that the slightly 

graded drop in Se content that is observed in the line scan in figure 3A of as deposited film is an artifact 

of the probing beam size and the CdSeTe film roughness. The CdSeTe is relatively rough because it has 

been grown on the underlying rough TCO.  Figure 4B also verifies that grading of the CdSeTe/CdTe film 

occurs with the CdCl2 treatment. The 4 areas selectively scanned show the Se content reducing from 

9.4% to 1.2% as the measurements are made progressively further from the MZO/CdSeTe interface. 

The effect of CdCl2 on the CdSeTe/CdTe film stack has been studied in detail. It was also 

Fig. 5. Current density vs voltage showing comparison of the electrical performance of the CdSeTe/CdTe devices 

before and after the CdCl2 passivation treatment.  Please see supplementary section to verify accuracy of these 

measurements. 



important to correlate the effect of changes in film morphology and composition with device 

performance. Therefore, devices were fabricated using these two films and their performance was 

measured using current density vs voltage measurements. Various parameters viz. short-circuit current 

density (JSC), open-circuit voltage (VOC), fill-factor and percentage conversion efficiency were measured. 

The measurement plots are shown in figure 5 and comparison of JSC, VOC, fill-factor and conversion 

efficiency are summarized in table 1. The devices were measured internally at Colorado State University 

using a J-V measurement system that has device measurements externally verified by a certified 

laboratory. The verification of accuracy of the measurements can be seen in supplementary section.    

 

 Cell Area 

(cm2) 

JSC 

(mA/cm2) 

VOC 

(mV) 

% Fill-

Factor 

% 

Efficiency 

As deposited 0.553 0.1 387 34.1 0.01 

CdCl2 treated 0.548 26.8 842 74.5 16.8 

 

It is clearly observed that the effect of CdCl2 passivation on CdSeTe/CdTe films is extremely 

important for fabrication of devices with good conversion efficiency. The device efficiency   improves 

from 0.01% to 16.8% following the CdCl2 passivation treatment. A similar device with CdTe absorber 

treated using CdCl2 was fabricated with an efficiency of 18.3% that was certified by ILX Lightwave 

Newport.   

 

Discussion 

 As-deposited CdSeTe/CdTe devices and devices treated with CdCl2 have been characterized to 

understand the effect of the CdCl2 passivation treatment on the film microstructure and elemental 

distribution and correlate this with electrical performance. The grain microstructure shows increase in 

grain size particularly for the CdSeTe layer with the CdCl2 passivation treatment. We also observe the 

removal of stacking faults terminating at the grain boundaries.  These observations are  similar to those 

made in conventional CdTe-only films with and without CdCl2 treatment [8], [9], [16], [17]. The CdCl2 

treatment is known to cause recrystallization and grain growth in CdTe films [16]. The small grains of 

CdSeTe observed at the MZO/CdSeTe interface in the as deposited films grow into much larger grains 

after the CdCl2 passivation treatment. As deposited films also contain several voids; most of which are 

concentrated in the CdSeTe layer and at the CdSeTe/CdTe interface. The CdCl2 treatment removes most 

of these voids. Fewer but larger voids are observed in films treated following the CdCl2 passivation. It 

may be possible that during the grain growth with CdCl2 passivation, some of these voids agglomerate 

into larger voids. The effects of these voids on device performance require further investigation. The 

MZO buffer layer is stable during the high temperature processing and no diffusion of elements or 

damage to MZO layer is observed.  

SUMMARY OF ELECTRICAL PERFORMANCE OF AS DEPOSITED CdSeTe/CdTe DEVICE COMPARED TO 

CdCl2 TREATED DEVICE  



Elemental distribution of Cd, Se, Te, Mg, Zn and Cl have been  studied in detail using EDS 

elemental maps, EDS line scans and EDS scans of selected areas. These results show that the CdSeTe and 

CdTe layers remain distinct in as deposited films and there is no or little diffusion between these layers. 

The CdCl2 treatment acts as a very effective process to diffuse CdSeTe into the CdTe layer removing the 

abrupt interface between CdSeTe and CdTe. This may be critical for good device performance but 

diffusion of CdSeTe/CdTe without CdCl2 passivation, grain growth and removal of stacking faults requires 

further investigation. The CdCl2 passivation treatment results in grain growth in CdTe films. In addition, 

the CdCl2 treatment is also known to promote diffusion of sulfur in CdS/CdTe devices [18].  The CdCl2 

treatment leads to the diffusion of Se in a similar way to form a graded absorber layer. The treatment 

leads to the intermixing of the two layers. It has also been reported that after CdCl2 treatment, Cl 

accumulates at CdTe grain boundaries in CdTe-only films and presence of Cl has an electronic effect on 

thin-film device performance through passivation. This mechanism also occurs in CdSeTe/CdTe thin-

films and devices. The Cl  decorates both the CdSeTe and CdTe grain boundaries in an identical way  

[10]. It is also observed that small concentrations of Cl accumulate at the MZO/CdSeTe interface but not 

at the MZO/TCO interface. These observations are also similar to behavior of Cl after CdCl2 passivation 

treatment in conventional CdTe-only devices. Therefore it can be assumed that Cl has similar material 

and electronic effects on CdTe-only and CdSeTe/CdTe films. Moreover, there is a strong indication that 

Se diffusion along grain boundaries as well as the grain bulk. This can have strong effect on lattice 

defects, band-gap, etc. at the grain boundaries and thus strong implications on device performance. 

These effects need to be identified and their effects characterized. Mg and Zn are known to be mobile 

species and tend to diffuse within the thin-films during high temperature processing. However, MZO 

appears to be very stable at elevated temperatures and no diffusion of Mg or Zn has been observed 

within the detection limits of EDS. 

Measurements of device performance of as deposited CdTe-only and CdSeTe/CdTe devices 

compared to CdCl2 treated devices are also similar. As deposited CdTe-only film have very poor 

performance but after CdCl2 passivation there is a steep improvement in efficiency [17]. This is also 

observed in CdSeTe/CdTe device performance as demonstrated in this study. This is understood to be 

due to Cl passivating the grain boundaries and this is associated with the removal of planar defects [19]. 

High densities of stacking faults observed in the as deposited material are completely removed. Twin-

boundaries are present in CdSeTe/CdTe films after passivation treatment, but they are low energy and  

benign in CdTe-only devices [15]. Since the behavior of CdSeTe/CdTe films and devices are similar to 

CdTe-only devices, it can be assumed that twin-boundaries do not act as recombination centers in 

CdSeTe/CdTe devices.        

Conclusions 

The effects of the CdCl2 passivation treatment on the grain structure of CdSeTe/CdTe absorber 

and photovoltaic devices have been analyzed. The investigation presented here shows the effect of the 

CdCl2 passivation treatment on sublimated CdSeTe/CdTe absorber films. Photovoltaic devices with a 

similar structure have been used to demonstrate a conversion efficiency of over 19% [6]. It is observed 

that prior to the CdCl2 passivation treatment, the CdSeTe and CdTe grains contain a high density of 

stacking faults. The density of stacking faults in the CdSeTe grains appears to be higher than that 



observed in the CdTe grains. The CdCl2 treatment is known to remove stacking faults in CdTe thin-films 

and we now have evidence that a similar effect occurs in CdSeTe films. After the CdCl2 passivation 

treatment the stacking faults are completely removed in the CdSeTe and the CdTe layer. The stacking 

faults are tetrahedral and of such low energy that they will not act as recombination centers. However, 

we do observe a clear correlation between enhanced conversion efficiency and removal of these defects 

and this is probably associated with full passivation of the terminating grain boundaries. This work 

confirms that the CdCl2 treatment is equally effective for defect passivation in CdSeTe/CdTe absorber 

thin-films. In addition to defect passivation, the CdCl2 treatment also causes grain growth and 

recrystallization of the CdSeTe/CdTe films. Prior to the CdCl2 passivation treatment, a large number of 

small CdSeTe grains are observed at the front interface with the MZO buffer layer. However, after the 

CdCl2 passivation treatment substantial grain growth is observed. The CdSeTe grains appear to have 

merged to form larger grains by agglomeration.  

Elemental distribution in the films is has been investigated to observe diffusion caused by the 

CdCl2 treatment. An abrupt interface between CdSeTe and CdTe layer is observed prior to CdCl2 

passivation treatment. After the CdCl2 treatment, the CdSeTe and CdTe layers inter-diffused with the 

movement of Se in the CdTe layer.  CdSeTe and CdTe grains merge to form larger grains. This diffusion of 

Se leads to the formation of a CdSeTe/CdTe graded absorber layer and removes the abrupt interface 

between these layers. Surprisingly, the high temperature depositions and the CdCl2 treatment do not 

cause depletion or diffusion of the MZO layer. The CdCl2 passivation treatment is fortuitously effective 

as a process to cause CdSeTe/CdTe diffusion to create a graded layer in the device. 

The electrical performance of a CdSeTe/CdTe absorber device is drastically improved after the 

CdCl2 passivation treatment. The devices show improvement in JSC, VOC and fill-factor. The CdCl2 

treatment is equally effective as a defect passivation treatment for this new device structure as it is for 

conventional thin film CdS/CdTe devices. Further optimization of this treatment will lead to improved 

device performance.   

The MgxZn1-xO (x=23) buffer used in device structure was optimized for higher band-gap CdTe 

absorber. CdTe graded with CdSeTe is used in these devices with CdSeTe forming and interface with 

MgZnO. Since CdSeTe has a lower band-gap as compared to CdTe, it would be important to again 

optimize the buffer layer for the lower band-gap. In addition, future work would include optimization of 

CdSeTe composition and grading to improve device efficiency.     
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