86 research outputs found

    Ergodic behavior of locally regulated branching populations

    Full text link
    For a class of processes modeling the evolution of a spatially structured population with migration and a logistic local regulation of the reproduction dynamics, we show convergence to an upper invariant measure from a suitable class of initial distributions. It follows from recent work of Alison Etheridge that this upper invariant measure is nontrivial for sufficiently large super-criticality in the reproduction. For sufficiently small super-criticality, we prove local extinction by comparison with a mean field model. This latter result extends also to more general local reproduction regulations.Comment: Published at http://dx.doi.org/10.1214/105051606000000745 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The process of most recent common ancestors in an evolving coalescent

    Get PDF
    Consider a haploid population which has evolved through an exchangeable reproduction dynamics, and in which all individuals alive at time tt have a most recent common ancestor (MRCA) who lived at time AtA_t, say. As time goes on, not only the population but also its genealogy evolves: some families will get lost from the population and eventually a new MRCA will be established. For a time-stationary situation and in the limit of infinite population size NN with time measured in NN generations, i.e. in the scaling of population genetics which leads to Fisher-Wright diffusions and Kingman's coalescent, we study the process A=(At)\mathcal A = (A_t) whose jumps form the point process of time pairs (E,B)(E,B) when new MRCAs are established and when they lived. By representing these pairs as the entrance and exit time of particles whose trajectories are embedded in the look-down graph of Donnelly and Kurtz (1999) we can show by exchangeability arguments that the times EE as well as the times BB from a Poisson process. Furthermore, the particle representation helps to compute various features of the MRCA process, such as the distribution of the coalescent at the instant when a new MRCA is established, and the distribution of the number of MRCAs to come that live in today's past

    Hierarchical equilibria of branching populations

    Get PDF
    The objective of this paper is the study of the equilibrium behavior of a population on the hierarchical group (Omega)N consisting of families of individuals undergoing critical branching random walk and in addition these families also develop according to a critical branching process. Strong transience of the random walk guarantees existence of an equilibrium for this two-level branching system. In the limit N -> (infinity symbol) (called the hierarchical mean field limit), the equilibrium aggregated populations in a nested sequence of balls (symbole)(N) of hierarchical radius (symbol) converge to a backward Markov chain on R+. This limiting Markov chain can be explicitly represented in terms of a cascade of subordinators which in turn makes possible a description of the genealogy of the population.Multilevel branching, hierarchical mean-field limit, strong transience,genealogy.

    Hierarchical equilibria of branching populations

    Get PDF
    The objective of this paper is the study of the equilibrium behavior of a population on the hierarchical group ΩN\Omega_N consisting of families of individuals undergoing critical branching random walk and in addition these families also develop according to a critical branching process. Strong transience of the random walk guarantees existence of an equilibrium for this two-level branching system. In the limit N→∞N\to\infty (called the hierarchical mean field limit), the equilibrium aggregated populations in a nested sequence of balls Bℓ(N)B^{(N)}_\ell of hierarchical radius ℓ\ell converge to a backward Markov chain on R+\mathbb{R_+}. This limiting Markov chain can be explicitly represented in terms of a cascade of subordinators which in turn makes possible a description of the genealogy of the population.Comment: 62 page

    Branching systems with long living particles at the critical dimension

    Get PDF
    A spatial branching process is considered in which particles have a life time law with a tail index smaller than one. Other than in classical branching particle systems, at the critical dimension the system does not suffer local extinction when started from a spatially homogenous initial population. In fact, persistent convergence to a mixed Poissonian system is shown. The random limiting intensity is characterized in law by the random density in a space point of a related age-dependent superprocess at a fixed time. The proof relies on a refined study of the system starting from asymptotically large but finite initial populations

    Positive contraction mappings for classical and quantum Schrodinger systems

    Full text link
    The classical Schrodinger bridge seeks the most likely probability law for a diffusion process, in path space, that matches marginals at two end points in time; the likelihood is quantified by the relative entropy between the sought law and a prior, and the law dictates a controlled path that abides by the specified marginals. Schrodinger proved that the optimal steering of the density between the two end points is effected by a multiplicative functional transformation of the prior; this transformation represents an automorphism on the space of probability measures and has since been studied by Fortet, Beurling and others. A similar question can be raised for processes evolving in a discrete time and space as well as for processes defined over non-commutative probability spaces. The present paper builds on earlier work by Pavon and Ticozzi and begins with the problem of steering a Markov chain between given marginals. Our approach is based on the Hilbert metric and leads to an alternative proof which, however, is constructive. More specifically, we show that the solution to the Schrodinger bridge is provided by the fixed point of a contractive map. We approach in a similar manner the steering of a quantum system across a quantum channel. We are able to establish existence of quantum transitions that are multiplicative functional transformations of a given Kraus map, but only for the case of uniform marginals. As in the Markov chain case, and for uniform density matrices, the solution of the quantum bridge can be constructed from the fixed point of a certain contractive map. For arbitrary marginal densities, extensive numerical simulations indicate that iteration of a similar map leads to fixed points from which we can construct a quantum bridge. For this general case, however, a proof of convergence remains elusive.Comment: 27 page

    Discrete-time classical and quantum Markovian evolutions: Maximum entropy problems on path space

    Full text link
    The theory of Schroedinger bridges for diffusion processes is extended to classical and quantum discrete-time Markovian evolutions. The solution of the path space maximum entropy problems is obtained from the a priori model in both cases via a suitable multiplicative functional transformation. In the quantum case, nonequilibrium time reversal of quantum channels is discussed and space-time harmonic processes are introduced.Comment: 34 page
    • …
    corecore