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Abstract

The objective of this paper is the study of the equilibrium behavior of
a population on the hierarchical group ΩN consisting of families of indi-
viduals undergoing critical branching random walk and in addition these
families also develop according to a critical branching process. Strong
transience of the random walk guarantees existence of an equilibrium for
this two-level branching system. In the limit N → ∞ (called the hier-
archical mean field limit), the equilibrium aggregated populations in a

nested sequence of balls B
(N)
` of hierarchical radius ` converge to a back-

ward Markov chain on R+. This limiting Markov chain can be explicitly
represented in terms of a cascade of subordinators which in turn makes
possible a description of the genealogy of the population.
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1 Introduction

Spatial branching processes involve two basic mechanisms, spatial migration
and branching. These two mechanisms act in opposite directions: the branch-
ing causes fluctuations of the local population densities which are counteracted
by the smoothing effect of the migration, and a transient migration is needed
to sustain an equilibrium of a geographically extended population where each
individual has an offspring of mean one. Multilevel branching systems (see, e.g.
[DH], [GHW], [Wu]) involve branching, that is death and replication, at a col-
lective level. For example, in two-level branching systems both individuals and
families (that is, collections of individuals that trace back to a common ances-
tor in the individual branching) reproduce independently. In such systems, the
fluctuations of the population densities are substantially enhanced compared to
systems with branching on the individual level only, and in two-level branching
systems a strongly transient migration is needed to sustain an equilibrium. It
is well known that Euclidean random walks are transient if and only if the di-
mension is bigger than 2, and strongly transient if and only if the dimension is
bigger than 4. In this sense, 2 is the critical dimension for one-level branching
systems, and 4 is the critical dimension for two-level branching systems.

In the present paper, we will focus on spatial models with a hierarchical
(or ultrametric) geographical structure (N islands (blocks of radius one) per
archipelago (blocks of radius 2), N blocks of radius ` per block of radius ` + 1,
` > 1, cf. [SF]). The migration process then is modelled by so called hierar-
chical random walks: at a certain rate depending on `, an individual jumps to
a randomly chosen island in distance `. This ultrametric structure leads to a
separation of time scales as N →∞, and makes the models particularly suitable
for a thorough analysis of equilibrium states and cluster formation. It turns out
that in the hierarchichal mean field limit (with order of N individuals per island
and N → ∞) there is a separation of time scales in which the population den-
sities in the blocks of different radii evolve. For a block of radius `, the natural
time scale turns out to be N ` in the case of one-level branching (see [DG2])
and N `/2 in the case of two-level branching. On this time scale, the population
density in a block of radius ` performs, as N →∞, a process whose fluctuations
are governed by the branching and whose drift is given by a flow of emigration
and immigration from the surrounding block. For a sequence of nested blocks,
this leads to a hierarchy of branching equilibria whose structure we describe in
the next subsection. For the case of two-level branching, the convergence of the
population densities in nested blocks towards this hierarchy as N →∞ is stated
in Theorem 2.4.1 and proved in section 5.

Generically, in our hierarchical model the migration process that sustains
an equilibrium is at the border to recurrence in the case of one-level branching,
and at the border to weak transience in the case of two-level branching, as
N → ∞. In this sense, the hierarchical one-level branching equilibria studied
in [DG2] correspond to a situation “near dimension 2”, and the hierarchical
two-level branching equilibria studied in our paper correspond to a situation
“near dimension 4”. Dimension 4 is of considerable interest because it serves as
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a critical dimension not only for the two-level branching systems studied in this
paper but also for a number of phenomena in statistical physics including the
large scale fluctuations of ferromagnetic models at the critical temperature.

The structures of the family clusters in equilibrium can be best understood
in terms of the genealogy of the branching system, see [DP1, DP2, StW]). We
will describe the genealogy of the equilibrium population in the mean-field limit
using a cascade of subordinators.

2 Overview

2.1 Hierarchies of one–and two–level Feller branching dif-
fusions

Consider a large population whose size is fluctuating because of critical re-
production, and which is subject to emigration of individuals and immigration
from a surrounding (still larger) reservoir of individuals. The immigration rate is
given by the population density in the environment, which fluctuates on a slower
time scale. Now consider an infinite hierarchy of such populations P`, ` = 1, 2, ..,
where P`+1 acts as an environment for P`, and think of an equilibrium situation.
We will study two situations where there is a sequence of time scales such that,
in the limit of large local population sizes, on the time scale associated with P`

the population density ζ`+1 of P`+1 remains constant, and given ζ`+1 = a, the
dynamics of the population density ζ` of P` is of the form

dζ`(t) = dM`(t)− c`(ζ`(t)− a) dt. (2.1.1)

Here c` is a positive constant which describes the migration intensity into and
out of P`, and M` is a martingale describing the fluctuations of ζ`.

In subsection 2.2.3 we will describe a situation in which the martingale M`

has quadratic variation
d〈M`〉(t) = ζ`(t)dt, (2.1.2)

hence in this case (2.1.1) specializes to

dζ`(t) =
√

ζ`(t)dW`(t)− c`(ζ`(t)− a) dt, (2.1.3)

where W1,W2, ... are independent Wiener processes. For each ` (2.1.3) is the
stochastic differential equation of a subcritical Feller branching diffusion with
immigration ([AN, EK]).

Later on, we will consider a dynamics of the population density ζ` which is
again of the form (2.1.1) but where the fluctuations are governed by a “family
structure” of the population. More precisely, the martingale M` has quadratic
variation

d〈M`〉(t) =

(∫

(0,∞)

x2ξ`(t, x)dx

)
dt. (2.1.4)
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where ξ`(t, x) measures the rescaled number of families of size x within P`. The
link between the population density ζ`(t) and the density ξ`(t, x) of family sizes
is given by

ζ`(t) =
∫

(0,∞)

x ξ`(t, x)dx. (2.1.5)

The form (2.1.4) of the fluctuations of ζ` indicates that we are dealing with Feller
branching diffusions of families rather than individuals. This family branch-
ing shows up in the dynamics which is described by an absolutely continuous
measure-valued process with density ξ`(t, x) satisfying the stochastic partial dif-
ferential equation (SPDE)

∂

∂t
ξ`(t, x) =

√
ξ`(t, x) Ẇt(x) + G∗ξ`(t, x)− c

(
− ∂

∂x
xξ`(t, x) + aδ′0(x)

)
(2.1.6)

with c = c` where G∗ is the adjoint of the generator G of a critical Feller
branching diffusion given by

Gf =
1
2
x

∂2

∂x2
f, (2.1.7)

Ẇ is space-time white noise and δ′0 is the derivative (in the sense of Schwartz
distributions) of the δ-function at 0. An equivalent formulation of (2.1.6) is

∂

∂t
〈ξ`(t), f〉 = 〈

√
ξ`(t)Ẇt, f〉+

1
2
〈ξ`(t), xf ′′〉 − c

(
〈ξ`(t), xf ′〉 − a lim

ε↓0
〈1
ε
δε, f〉

)
,

(2.1.8)
where δε is the Dirac measure in ε, and f : (0,∞) → R has bounded first and
second derivatives with f(x) ≤ const x. Note that the first term in (2.1.6) (and
(2.1.8)) comes from the familiy branching, the second comes from the individual
branching, and the “mean reversion” term comes from the individual emigration
and the immigration of infinitesimally small families.

In addition, (2.1.6) shows that the sizes of the single families develop in-
dependently according to individual subcritical Feller branching diffusions. We
will therefore call ξ`, ` = 1, 2, . . ., a hierarchy of two-level branching diffusions.

Two-level branching diffusions have been introduced by Dawson and Hoch-
berg [DH] as superprocesses over Feller branching diffusions, where all mass
accumulating in 0 is removed. Therefore, these processes take their values in
the measures on (0,∞). In fact, it turns out that for t > 0 they have absolutely
continuous states. In our context, in addition to the set-up of [DH], there is a
“continuous immigration of small families”. We will see how this fits into the
framework of immigration processes from the boundary studied in Li and Shiga
[LS]. For general background on superprocesses and related stochastic partial
differential equations, see [D] and [DP2].

The hierarchies of branching equilibria considered in our paper are motivated
through a spatial picture which we describe for the case of (2.1.2) (“one-level
branching”) in subsection 2.2.3 and for the case of (2.1.4) (“two-level branch-
ing”) in subsection 2.4. The case of a hierarchy of one-level branching systems
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was studied by Dawson and Greven [DG1, DG2] in the context of super-random
walks (or interacting Feller branching diffusions).

For any given θ > 0 (which in the geographical model will play the role of a
“global population density”) we will construct the hierarchy

(. . . , ζθ
`+1, ζ

θ
` , . . . , ζθ

2 , ζθ
1 ), (2.1.9)

in terms of an entrance law for a backward Markov chain where the conditional
law of ζ` given ζ`+1 = a is an equilibrium state of (2.1.1). More precisely, in
subsection 4.1 we will show the following result.

Proposition 2.1.1 Let (c`)`≥1 be a sequence of positive numbers, and let us
distinguish two cases:

a) Assume
∑

` c−1
` < ∞. For a > 0, ` ∈ N, let Π(1)

` (a, .) be the equilibrium
distribution of (2.1.3).

b) Assume
∑

` c−2
` < ∞. For a > 0, ` ∈ N and c = c`, let ξ`,a be an equilib-

rium state of (2.1.6), and Π(2)
` (a, .) be the distribution of

∫
(0,∞)

xξ`,a(x)dx.
In both cases, for every θ > 0 the backward Markov chain with transition

probability
P (ζ` ∈ A|ζ`+1 = a) = Π`(a,A),

where Π is either Π(1) or Π(2), has a unique entrance law {ζθ
` }`=...,2,1 satisfying

Eζθ
j ≡ θ (2.1.10)

and
lim

j→∞
ζθ
j = θ a.s. (2.1.11)

2.1.1 A cascade of subordinators

To work out parallels between the one- and two-level branching situations de-
scribed in subsections 2.2.3 and 2.4, and to discuss aspects relevant for the
genealogy of the hierarchical branching equilibria, we write Π`(a, .) for the equi-
librium distribution of (2.1.1) in the two cases (2.1.2) and (2.1.4) (which corre-
spond to cases a) and b) in Proposition 2.1.1).

In both cases the parameter a enters as a factor into the immigration rate of
a continuous state branching process, hence Π`(a1 +a2, .) = Π`(a1, .)∗Π`(a2, .).
Therefore the Π`(a, .) are infinitely divisible distributions on (0,∞) and there
exist subordinators (that is, processes with stationary independent non-negative
increments) S`(a) , a ≥ 0, such that

L(S`(a)) = Π`(a, .). (2.1.1)

We will see in subsection 6.2 that in case a) the S` are Gamma processes.
In both cases, the Lévy-Khinchin decomposition (see [K2], Chapt. 15)

S`(a) =
∑

i Hi describes (asymptotically as N → ∞) the partitioning of the
equilibrium population in B

(N)
` into subpopulations stemming from one and
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the same immigrant into B
(N)
` , given that the population density of the sur-

rounding block B
(N)
`+1 is a.

Recall from (2.1.1) and Proposition 2.1.1 that
∫

xΠ`(a, dx) = a. (2.1.2)

Therefore,
ES`(a) = a. (2.1.3)

Let us denote (in either of the two cases) the Lévy measure of S` by µ`,
and the second moment of µ` by m`. An iteration of the Lévy-Khinchin repre-
sentation (which can be interpreted in terms of the genealogy of the branching
hierarchy, see subsection 4.3) will show that the Lévy measure of the iterated
subordinator S`(S`+1(. . . Sj−1)) has second moment m` + . . . + mj−1 (see sub-
section 4.5). Under the condition

∞∑

`=1

m` < ∞. (2.1.4)

we will prove in subsection 4.2 that for each θ > 0 the limit in distribution

ζθ
` = d- lim

j→∞
S`(S`+1 . . . Sj−1(θ))), (2.1.5)

exists, has expectation θ and defines an entrance law with respect to (Π`(a, .)).
In particular one has

ζθ
` =d S`(S`+1 . . . Sj−1(ζθ

j ))), j > `. (2.1.6)

For each j > ` this gives a decomposition of ζθ
` , which asymptotically as N →∞,

stands for the partitioning of the equilibrium population ζ
(N,θ)
` in B

(N)
` into

subpopulations stemming from one and the same immigrant into B
(N)
j−1.

The summability condition (2.1.4) is equivalent to the transience condition
(2.2.4) in the one-level case, and to the strong transience condition (2.3.10) in
the two-level case, since we will show that m` = 1/2c` in the one-level case, and
m` = 1/4c2

` in the two-level case (see Remarks 6.2.3 and 3.2.7).

2.1.2 Genealogy

In Section 4.3 we develop a genealogy of the jumps occurring in the cascade of
subordinators. The idea is that given a jump of S`+1(·) at time ti there will be
a set of jumps of S`(·) that occur in the time interval (S`+1(ti−), S`+1(ti)) and
these level ` jumps will be said to be descendants of the level (` + 1) jump. In
subsections (4.3), (4.4) and (4.6) we use this idea to develop the full genealogical
structure of the population associated with the entrance law. This leads to a
decomposition of the population into a countable collection of subpopulations
of individuals having a common ancestor. For the case of critical individual
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branching this was done in [DG2], for the two-level branching case this is new.
We will work out the parallels between the two cases in a general framework,
which also sheds some new light on the results of [DG2].

Intuitively this genealogy describes the limiting genealogical structure of
the spatial branching equilibria with hierarchical geographic structure described
in the Introduction as the parameter N → ∞ and the analogue of the “clan
decomposition” of the equilibrium of super-Brownian motion (e.g. [DP1]).

2.2 Hierarchical geography, random walks and branching
equilibria

2.2.1 A class of random walks

In order to give a precise formulation for the spatial system we now describe
the set ΩN of sites on which the spatial population lives. For fixed N ∈ N,
let ΩN be the countably many leaves of a tree all of whose inner nodes have
degree N + 1. In other words, each node in depth ` + 1, ` = 0, 1, . . ., has
N successors in depth ` and one predecessor in depth ` + 2. For two sites
y, z ∈ ΩN , their hierarchical distance dN (y, z) is defined as the depth of their
closest common ancestor in the tree. Note that dN is an ultrametric, that is,
dN (y, z) ≤ max{dN (y, x), dN (x, z)}. We define the individual migration on ΩN

as follows. Let q
(N)
1 , q

(N)
2 , . . . be positive numbers with

∑
` q

(N)
` < ∞. At rate

q
(N)
` the individual makes a jump of distance ` (i.e., it waits for an exponentially

distributed time with parameter
∑

` q
(N)
` and then jumps a distance j with

probability q
(N)
j /

∑
` q

(N)
` ), choosing its arrival site uniformly among all sites at

a distance ` from its previous site.
The set ΩN can be identified with the set of sequences in {0, 1, . . . , N − 1}

almost all of whose entries are equal to zero. With component-wise addition
mod N , ΩN is a countable Abelian group (the so called hierarchical group of
order N). Note that dN (y, z) is translation invariant; it will be written as
|y − x|. The migration specified above is a (continuous time) random walk on
ΩN called hierarchical random walk. Hierarchical random walks, in particular
their transience and recurrence properties, are studied in [DGW2], [DGW3].

2.2.2 A system of branching random walks

We now introduce a system of branching random walks on ΩN . This is given
by a system of particles undergoing symmetric random walks with migration
rates q

(N)
` together with branching. Branching and migration are assumed in-

dependent. We specify the branching mechanism as simply as possible: after a
unit exponential time, an individual, independently of all the others, either is
removed or splits into two, each case with probability 1/2.

Remark 2.2.1 [LMW], [Gr] Assume that the migration rates q
(N)
` are such

that the individual random walk is transient. Then, for each θ > 0, there exists
a unique branching equilibrium with a mean number of θ individuals per site.
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This equilibrium is of Poisson type, i.e. the equilibrium population Φ is the
superposition Φ =

∑
i Φi of a Poisson system

∑
i δΦi of families (each family

consists of a collection of individuals which in a historical picture can be traced
back to a common ancestor).

2.2.3 The hierarchical mean-field limit of a branching equilibrium
“near dimension two”

Now consider, for a large N , the total number Z
(N)
` (t) of individuals in a closed

ball B
(N)
` of radius ` at time t. Note that B

(N)
` has N ` elements, and look at the

time evolution of the population density (or block mean) A
(N)
` (t) = Z

(N)
` (t)N−`

in B
(N)
` at time scale tN `. This corresponds to the classical Feller branching

diffusion approximation [EK]. However, in order for the immigration into and
emigration from B

(N)
` to produce a nondegenerate drift term in the limit N →∞

one must adjust the migration rates. The appropriate adjustment is

q
(N)
` = c`−1N

−(`−1), (2.2.1)

where the c` do not depend on N and satisfy

lim sup
`

c`+1

c`
< ∞. (2.2.2)

We will call a random walk on ΩN with jump rates q
(N)
` of the form (2.2.1) a

(1, (c`), N)-random walk. The following proposition is proved in [DGW2].

Proposition 2.2.2 Consider a (1, (c`), N)-random walk on ΩN with rates given
by (2.2.1). Assume that

lim sup
`

c`+1

c`
< N. (2.2.3)

Then the random walk is transient if and only if
∑

`

c−1
` < ∞. (2.2.4)

Now assume that (cj) satisfies (2.2.2). Then for each N > lim sup`
c`+1
c`

,
because of Proposition 2.2.2 and Remark 2.2.1 there is an equilibrium for the
system of (1, (c`), N)-branching random walks with mean θ for each θ > 0 . We
now consider the corresponding equilibrium population densities A

(N)
` in B

(N)
` ,

` = 1, 2, . . . (where here and below (B(N)
` ) denotes a sequence of nested balls

of radii ` in ΩN ). In order to identify the limit as N → ∞ of this sequence of
population densities we must consider the dynamics of A

(N)
` in its natural time

scale N `. Let us first discuss on a heuristic level why, in the limit N →∞, the
drift term on the r.h.s. of (2.1.1) arises on the time scale N ` for the population
density in B

(N)
` . Because of the ultrametric structure of ΩN , an individual in

B
(N)
` has to make a jump of size ≥ ` + 1 in order to leave B

(N)
` . Because of
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(2.2.1) and (2.2.2), for N large, jumps of size > ` + 1 happen rarely compared
to jumps of size ` + 1 (since ql+k = o(ql+1) as N → ∞ for k > 1). Hence the
individual emigration rate from B

(N)
` on time scale N ` is c` (asymptotically as

N → ∞). Concerning immigration into B
(N)
` , again because of (2.2.1), it is

only the environment in B
(N)
`+1 that is relevant for large N . An individual in

B
(N)
`+1 \ B

(N)
` necessarily has to jump a distance ` + 1 in order to make it into

B
(N)
` , and on average every (N − 1)-st of these jumps will take the individual

into B
(N)
` (note that B

(N)
`+1 is N times as large as B

(N)
` ). Since the block mean

A
(N)
`+1 does not change on the time scale N ` as N → ∞, the total immigration

rate into B
(N)
` on this time scale is (asymptotically as N →∞) of the order

Z
(N)
`+1N `q

(N)
`+1/N = (N `+1A

(N)
`+1)c`/N = c`A

(N)
`+1N

`. (2.2.5)

This suggests that the limiting dynamics of the population densities A
(N)
` , in

their natural time scales, as N → ∞ is given by (2.1.1) with a = A
(N)
`+1. The

separation of time scales on balls of different radii that underlies the previous
discussion is a feature of the hierarchical random walks, which is due to the
ultrametric structure of ΩN (see [DGW2]). This is also explained in more detail
in Remark 2.3.4 below.

Instead of branching particle systems, Dawson and Greven [DG2] consider
super-random walks (or so-called interacting Feller diffusions) on ΩN . Note
also that the definition of the random walk in [DG2] is slightly different but
asymptotically equivalent as N → ∞ to the one used in this paper. In [DG2]
the sites to which a jump is made are chosen with uniform distribution on a ball
rather than on a sphere. However, the “interior” of the ball is asymptotically
negligible as compared to the sphere as N goes to infinity.

A particle system analogue of Theorem 4(b) of [DG2] is the following, which
we state without proof.

Proposition 2.2.3 Consider a sequence (c`) satisfiying conditions (2.2.4) and
(2.2.2) for transience. For N large enough such that (2.2.3) is met, let the indi-
vidual migration process be a (1, (c`), N)-random walk. For θ > 0 let Z

(N,θ)
` (t)

denote the total number of individuals in B
(N)
` at time t and A

(N,θ)
` (t) :=

Z
(N,θ)
` (t)N−` be the population density at time t in B

(N)
` in the Poisson type

branching equilibrium population on ΩN with mean number θ of individuals per
site (see Remark 2.2.1). Let {ζθ

` } be the entrance law provided by Proposition
2.1.1, case a). Then

{A(N,θ)
` (0)}`∈N =⇒ {ζθ

` }`∈N as N →∞,

where =⇒ denotes weak convergence of finite dimensional distributions.

Let us now explain in which sense transient (1, (c`), N)-random walks can
be interpreted as random walks “near dimension 2”.
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Definition 2.2.4 [DGW2] Let Z be an irreducible transient random walk on a
countable Abelian group Γ. Its degree of transience is defined by

γ := sup{η ≥ 0 : E0L
η < ∞}, (2.2.6)

where L is the last exit time of Z from 0 ∈ Γ.

Expressed in more analytic terms, the degree of transience of Z is

γ = sup{η ≥ 0 :
∫ ∞

1

tηpt(0, 0) dt < ∞},

where pt is the transition probability of Z [DGW2, SaW].
For simple symmetric random walk on the d-dimensional lattice Zd, it is well-

known that dimension 2 is the borderline for transience. For d > 2, the degree
of transience is d/2 − 1, since the rate of decay of the transition probability is
pt(0, 0) ∼ const.t−d/2.

Remark 2.2.5 [DGW2] a) Let 0 < c < N . Then the (1, (c`), N)-random walk
on ΩN is transient if and only if c > 1. In this case its degree of transience is
log c/(log N − log c). Thus for fixed c the transient (1, (c`), N)-random walks on
ΩN have degrees of transience O(1/ log N) and therefore asymptotically as N →
∞, can be viewed as analogues of random walks “near (Euclidean) dimension
2”.

b) Assume that (c`) satisfies conditions (2.2.4) and (2.2.2), and put c :=
lim sup c`+1/c` ≥ 1. Then, for all N > c the (1, (c`), N)-random walk on ΩN is
transient with degree of transience in the interval [0, log c/(log N − log c)].

Since certain properties of systems of branching random walks such as per-
sistence and structure of occupation time fluctuations depend only on the degree
of transience of the random walks, branching populations whose migration pro-
cess is a hierarchical random walk can give insight into the behavior of a larger
class of branching populations whose random walks have the same degree of
transience.

2.3 Two-level branching systems in a hierarchical geogra-
phy

2.3.1 Strongly transient migration

Whereas the situation described in subsection 2.2.3 gives an analogue to a sit-
uation “near dimension 2”, our main focus later on will be on the analogue to
a situation “near dimension 4”. In this context we will consider the (stronger)
mass fluctuations induced by a critical reproduction of whole families (of mu-
tually related individuals), together with a (stronger) smoothing caused by a
strongly transient migration.

12



Definition 2.3.1 An irreducible random walk Z on a countable Abelian group
Γ is called strongly transient if

E0L < ∞ (2.3.7)

where L denotes the last exit time of Z from 0. A transient random walk with
E0L = ∞ is called weakly transient

Note that strong transience is equivalent to
∫ ∞

1

tpt(0, 0)dt < ∞

and a necessary condition is that the degree of transience be equal to or greater
than 1 [DGW2]. Moreover, as mentioned above simple symmetric d-dimensional
random walk has degree of transience d/2 − 1, and it is strongly transient iff
d > 4.

In order to introduce a family of strongly transient random walks on ΩN we
replace (2.2.1) by

q
(N)
` = c`−1N

−(`−1)/2, (2.3.8)

where the c` do not depend on ` and satisfy (2.2.2). We will call a random walk
on ΩN with jump rates q

(N)
` of the form (2.3.8) a (2, (c`), N)-random walk.

Proposition 2.3.2 [DGW2] Consider a (2, (c`), N)-random walk on ΩN with
rates given by (2.3.8). Assume that

lim sup
`

c`+1

c`
< N1/2. (2.3.9)

Then the random walk is strongly transient if and only if
∑

`

c−2
` < ∞. (2.3.10)

Remark 2.3.3 [DGW2] a) Let 0 < c < N1/2. Then the (2, (c`), N)-random
walk on ΩN is strongly transient if and only if c > 1. In this case its degree of
transience is

log N + 2 log c

log N − 2 log c
.

Thus for fixed c the strongly transient (2, (c`), N)-random walks have degree of
transience 1+O(1/ log N) and therefore asymptotically as N →∞ can be viewed
as analogues of random walks “near (Euclidean) dimension 4”.

b) Assume that (c`) satisfies conditions (2.3.10) and (2.2.2), and put c :=
lim sup c`+1/c` ≥ 1. Then, for all N > c2 the (2, (c`), N)-random walk on
ΩN is strongly transient with degree of transience in the interval [1, (log N +
2 log c)/(log N − 2 log c)].
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Remark 2.3.4 The natural time scale for the strongly transient (2, (c`), N)-
random walk in B

(N)
` is N `/2. More precisely, as shown in [DGW2], asymptoti-

cally as N →∞ for this random walk on the time scale N `/2 only the migrations
within the ball B

(N)
` and the surrounding ball B

(N)
`+1 are relevant. Similarly, this

occurs for the transient (1, (c`), N)-random walk in time scale N ` (see [DGW2]
for details). This effect is basic for the limiting hierarchy of branching equilibria
obtained in this paper.

2.3.2 Two-level branching equilibria

A main objective of this paper is to study two-level branching systems for a
migration which is on the border between strong and weak transience – recall
that a strongly transient migration is required for the existence of a branching
equilibrium. Thus, for Euclidean random walks, d = 4 is the critical dimension
for a two-level branching system in the same way as dimension d = 2 is the
critical dimension for a one- level branching system.

We are going to study two-level branching systems on ΩN . Consider a sys-
tem of (2, (c`), N)-random walks on ΩN such that (c`) satisfies the conditions
(2.3.9) and (2.3.10) for strong transience, and recall from Remark 2.2.5 that
these random walks are close to the border to weak transience at least for
large N if (c`) does not grow superexponentially. Introduce, in addition to the
individual branching and migration, a family branching: independently of ev-
erything else, after a unit exponential time each family Φi either vanishes or
reproduces resulting in two identical copies Φ′i,Φ

′′
i , each case with probability

1/2. After a reproduction event Φ′i and Φ′′i evolve as independent one level
branching systems. This creates the basic two-level branching system Ψ(N)(t)
which is started with the family system at time t0 given by Ψ(N)(t0) =

∑
i δΦi

described in Remark 2.2.1.
The following result is the analogue of [GHW] for two-level branching sys-

tems on ΩN .

Proposition 2.3.5 Assume that
(i) the random walk on ΩN is strongly transient and
(ii) Ψ(N)(t0) =

∑
i δΦi where {Φi} corresponds to the family decomposition of

an equilibrium state for the one-level branching random walk with mean number
θ of individuals per site.
Then as t0 → −∞, the two-level branching system Ψ(N)(0) converges in distri-
bution to a translation invariant equilibrium Ψ(N,θ)(0) with a mean number θ of
individuals per site.

Remark 2.3.6 The notation Ψ(N)(t) and Ψ(N,θ)(t) will be used throughout to
denote the two level branching system and the equilibrium process with mean θ,
respectively.

Remark 2.3.7 Greven and Hochberg [GH] have obtained more general condi-
tions under which the convergence to equilibrium as in Proposition 2.3.5 occurs
as well as conditions under which it fails.
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Now we consider a system of (2, (c`), N) random walks with (c`) satisfy-
ing conditions (2.3.10) and (2.2.2) for strong transience. Then for each N >(
lim sup`

c`+1
c`

)2

because of Propositions 2.3.2 and 2.3.5 there is a two-level

branching equilibrium Ψ(N,θ)(t) with a mean number of θ individuals per site
for each θ > 0. A main objective of this paper is to study the equilibrium
structure that arises in the limit as N → ∞ of the corresponding sequence of
family structures in the blocks B

(N)
` .

2.4 The hierarchical mean-field limit of a two-level branch-
ing equilibrium “near dimension four”

2.4.1 Local normalized family-size process

Let, for fixed N , Ψ(N,θ)(t), t ∈ R, be the equilibrium process of the two-level
branching system as provided by Proposition 2.3.5. Denote the number of
families in Ψ(N,θ)(t) having j individuals in B

(N)
` by n

(N,θ)
` (t, j) and write

H
(N,θ)
` (t) :=

∑
j n

(N,θ)
` (t, j)δj for the local family-size process. For each fixed `,

H
(N,θ)
` (0) is a random measure on N which describes the population of equilib-

rium family sizes in the block B
(N)
` . We note that the process {H(N,θ)

` (t)}t∈R
can be viewed as a branching Markov chain on Z+ with instantaneous killing at
0, the Markov chain on Z+ being a standard subcritical binary branching pro-
cess with immigration. Note that

∑
j jn

(N,θ)
` (t, j) = Z

(N,θ)
` (t), the number of

individuals in B
(N)
` at time t . Now consider the equilibrium normalized family

size process defined by

η
(N,θ)
` (t) =

∑

j

N−`/2n
(N,θ)
` (tN `/2, j)δjN−`/2 , (2.4.11)

In other words, for 0 < a < b < ∞,

η
(N,θ)
` (t)(a, b) = N−`/2η`(N `/2t,N `/2(a, b)). (2.4.12)

Note that the natural time scale in which to observe the subpopulation in B
(N)
`

in this case is N `/2 and not N ` as was the case for one-level branching (see
Remark 2.3.4).

For each `,N and t, η
(N,θ)
` (t) is a random measure on (0,∞). More precisely,

we take as state space the set M1(0,∞) of Radon measures µ on (0,∞) that
satisfy the condition

∫
xµ(dx) < ∞. (Note that we do not keep track of families

of size 0.)
The corresponding normalized population mass in B

(N)
` (the “radius ` block

average”) is given by

ζ
(N,θ)
` (t) =

∫
xη

(N,θ)
` (t, dx) =

∑

j

N−`jn
(N,θ)
` (N `/2t, j) = N−`Z

(N,θ)
` (N `/2t),

(2.4.13)
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and in terms of Ψ(N,θ)(t):

ζ
(N,θ)
` (t) =

1
N `

∫ ∑

x∈ΩN ,|x|≤`

µ(x)Ψ(N,θ)(N `/2t, dµ). (2.4.14)

2.4.2 Convergence theorem

We now state our main result that makes precise the sense in which the entrance
law described in section 2.1 approximates the two level spatial equilibrium in
ΩN obtained in Proposition 2.3.5 when the parameter N →∞ and the random
walk satisfies (2.3.10).

Theorem 2.4.1 (Hierarchical mean-field limit) Consider a sequence (c`) satis-
fying conditions (2.2.2) and (2.3.10) for strong transience of the (2, (c`), N)-
random walk. For fixed N ∈ N obeying (2.3.9), and a sequence of nested
blocks B

(N)
` in ΩN , let {ζ(N,θ)

` (0)}`∈N be the radius ` block averages (defined in
(2.4.13)) of an equilibrium two-level branching system with an expected number
θ of particles per site. Let {ζθ

` }`∈N be the entrance law provided by Proposition
2.1.1, case b). Then

{ζ(N,θ)
` (0)}`∈N =⇒ {ζθ

` }`∈N as N →∞.

The proof of this result is based on the spatial ergodic theorem for the
equilibrium random field on ΩN obtained in section 5.1, a separation of time
scales property derived in section 5.2 and a diffusion limit theorem for the family
size processes {η(N,θ)

` (t)} as N →∞ obtained in section 5.3. Using these results
the proof of Theorem 2.4.1 is given in section 5.4.

3 Super subcritical Feller branching

In this section we continue the investigation of diffusion limits of two-level
branching populations without geographical structure, which were introduced in
[DH]. In our case, these are superprocesses whose basic process is a subcritical
Feller branching diffusion killed at 0 (this killing corresponds to the removal of
void families). With a view towards the application to the hierarchically struc-
tured geographical model, we will concentrate in subsection 3.1 on an initial
condition of many small families, which in the diffusion limit corresponds (on
a heuristic level) to an intial condition ∞δ0. In subsection 3.2.1 we investigate
time stationary super subcritical Feller branching processes which arise as dif-
fusion limits of two-level branching populations with a high-rate immigration
of individuals. The simplest situation is to think of each immigrant individual
founding a new family; in the diffusion limit this leads to super subcritical Feller
branching diffusions with immigration of ∞δ0 at a constant rate (abbreviated
by SSFBI). Again with a view towards the geographical model, we will consider
the situation where (only) every once in a while a newly immigrant individual
belongs to an already existing family. If this happens relatively rarely, then the
diffusion limt remains to be SSFBI, see Proposition 3.2.1 and Corollary 3.2.2.
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3.1 Diffusion limit of two-level branching particle systems

For c > 0 and ε > 0, consider the M1(0,∞)-valued family-size process {H̃ε(t, dx)}
of a two-level branching particle system (without geographical structure) with
branching rates equal to 1/ε at both levels and subcritical at the individual level
with subcriticality parameter εc. (An example is the local family size process
H

(N,θ)
` (defined in subsection 2.4.1) run at time scale N `/2 and with immigration

suppressed; here, c = c` and ε = N−`/2.)
Consider the rescaled family-size process

η̃ε(t, (x1, x2)) := εH̃ε(t, (x1/ε, x2/ε)), t > 0. (3.1.1)

Proposition 3.1.1 Let η̃ε(t) be as in (3.1.1). Assume that η̃ε(0) = εba
ε cδεb x

ε c
where a > 0 and x > 0 are fixed. Then
(a) as ε → 0,

{η̃ε(t)}t≥0 =⇒ {ξ(t)}t≥0 (3.1.2)

in the sense of weak convergence of Mf ([0,∞))-valued càdlàg processes, and ξ(t)
is the Mf ([0,∞))-valued superprocess starting in ξ(0) = aδx, whose motion is
the subcritical Feller branching process with generator Gc given by

Gcf =
(

1
2
x

∂2

∂x2
− cx

∂

∂x

)
f, (3.1.3)

acting on functions

f ∈ C2
0 ([0,∞)) := {f ∈ C2([0,∞)) : lim

x→∞
f(x) = 0, f(0) = 0}.

(Here Mf ([0,∞)) denotes the space of finite measures on [0,∞).)
(b) The law of the process ξ(t) is uniquely determined by the Laplace functional
as follows:

Eaδx

(
exp(−

∫

R+
f(y)ξ(t, dy))

)
= exp(−

∫
Vtf(y) ξ(0, dy))

= exp(−au(t, x)), (3.1.4)

where Vtf(x) = u(t, x) is the unique solution of the non-linear p.d.e.

∂u(t, x)
∂t

= Gc`
u(t, x)− 1

2
u(t, x)2 (3.1.5)

u(0, x) = f(x).

Proof This is essentially Theorem 4.1 of [DH].

Remark As an application of (3.1.4) and (3.1.5) we obtain the compact support
property of ξ appearing in Proposition 3.1.1. Assume that ξ(0) has compact
support and let R̄t denote the range of ξ(s) up to time t. Then following the
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method of Iscoe as in Theorem 1.8 of [LS] or Theorem A of [DLM] one can show
that R̄t is bounded almost surely. This involves showing (as in [DLM]) that for
c > 0 the equation

1
2
x

∂2u

∂x2
= xc

∂u

∂x
+

1
2
u2,

u(0) = 0,
∂u

∂x

∣∣∣∣
x=0

= α

has for any α > 0 a blow-up at some finite x.

3.1.1 Evolution equation and entrance law

In Proposition 3.2.1 we will prove an extension of Proposition 3.1.1 which in-
cludes immigration. In this subsection we obtain some properties of the solution
of the evolution equation that will be used there.

Let

C1(0,∞) := {f ∈ C(0,∞), lim
x→∞

f(x) = 0, |f(x)| ≤ const · x} (3.1.6)

and (Tt) be the semigroup of the Feller branching diffusion with subcriticality
parameter c, absorbed at zero.

Let Vtf be the solution of

∂

∂t
Vtf =

1
2
x

∂2

∂x2
Vtf − cx

∂

∂x
Vtf − 1

2
(Vtf)2, V0f = f. (3.1.7)

Lemma 3.1.2 Let f ∈ C1(0,∞), f ≥ 0. Then for t > 0, Vtf(x) is differen-
tiable at zero and

(Vtf)′(0) =
∫

f(y)κt(dy)− 1
2

∫ t

0

∫
(Vsf)2(y)κt−s(dy) ds (3.1.8)

where κt is the (Tt)-entrance law given by (6.2.16) in the Appendix.

Proof. First note if f ∈ C+
1 (0,∞) then Vtf(x) ≤ Ttf(x) so that Vt maps

C+
1 (0,∞) into itself. Using the evolution form of (3.1.7),

lim
ε↓0

Vtf(ε)
ε

= lim
ε↓0

Ttf(ε)
ε

− 1
2

∫ t

0

lim
ε↓0

Tt−s(Vsf)2(ε)
ε

ds (3.1.9)

The result then follows from (6.2.17).

Proposition 3.1.3 Let ξε(t), t ≥ 0 denote the super subcritical Feller branching
diffusion (without immigration) process starting in ε−1δε at time 0. Then as ε →
0, ξε converges in the sense of weak convergence of M1(0,∞)-valued continuous
processes on the time interval [t0,∞) for all t0 > 0 to a measure-valued diffusion
ξ0 where, for all t > 0, ξ0(t) is an infinitely divisible random measure with
Laplace functional given by

E exp
(−〈ξ0(t), f〉) = exp (−(Vtf)′(0)) . (3.1.10)
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Proof. Because Vtf(0) = 0 we have

E exp
(−〈ξ0(t), f〉) = lim

ε↓0
E exp (−〈ξε(t), f〉) (3.1.11)

= lim
ε↓0
Eε−1δε

exp (−〈ξ(t), f〉)

= lim
ε↓0

exp
(−ε−1(Vtf)(ε)

)

= lim
ε↓0

exp
(−ε−1((Vtf)(ε)− (Vtf)(0)

)

= exp (−(Vtf)′(0)) .

Remark 3.1.4 Since ξ0(t) is infinitely divisible, its Laplace transform must be
of the form

E exp
(−〈ξ0(t), f〉) = exp

(
−

∫
(1− e−〈m,f〉)Kt(dm)

)
, f ∈ C1((0,∞)).

(3.1.12)
for some uniquely determined measure Kt on M(0,∞), the space of Radon
measures on (0,∞). The measure Kt is the canonical measure of ξ0(t).

We can now put these results into the framework of [LS].
A crucial property of the entrance law (κt) given by (6.2.15), which follows

immediately by partial integration from the density (6.2.16), is given by the
following lemma.

Lemma 3.1.5 For all bounded continuously differentiable functions g on [0,∞)
with g(0) = 0,

lim
t→0

∫ ∞

0

g(x)κt(x)dx = g′(0). (3.1.13)

We fix a strictly positive function ρ ∈ D(Gc) with

ρ(x) = x for x ∈ (0,
1
2
], ρ(x) = 1 for x ≥ 1. (3.1.14)

Note that such a ρ meets condition [A] in [LS]. We take as state space Mρ :=
{µ ∈ M(0,∞) :

∫
ρ(x)µ(dx) < ∞}.

Following [LS] we put

Cρ(0,∞) := {f ∈ C(0,∞) : |f | ≤ constρ, lim
x→∞

f(x) = 0}, (3.1.15)

Dρ(Gc) := {f ∈ D(Gc) : f, Gcf ∈ Cρ(0,∞)} (3.1.16)
and

κ0+(g) := lim
t→0

∫ ∞

0

g(x)κt(x)dx, g ∈ Dρ(Gc). (3.1.17)

Combining (3.1.10), (3.1.12), (3.1.13) and (3.1.17) we obtain
∫

(1− e−〈m,f〉)Kt(dm) = (Vtf)′(0) = κ0+(Vtf), f ∈ C1((0,∞)), (3.1.18)

where Vtf is the solution of (3.1.7).
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3.2 Super subcritical Feller branching diffusion with indi-
vidual immigration

3.2.1 Diffusion limit with immigration

We now extend Proposition 3.1.1 to include immigration, taking a fixed t0 as ori-
gin of time. Since in our application the population from which the immigrants
come is structured into families that undergo family branching we incorporate
multitype immigration and label the set of possible families of immigrants by
I := [0, 1].

Let M1(I×(0,∞)) denote the set of Radon measures µ on I×(0,∞) satisfy-
ing

∫
I×(0,∞)

xµ(dy, dx) < ∞. We denote the single atom measure corresponding
to one individual of type yε

k ∈ I by δyε
k,1.

Consider the M1(I × (0,∞))-valued family-size process {Hε
I (t, dy, dx)}t0≤t

with branching rates equal to 1/ε at both levels, critical at the family level
and subcritical at the individual level with subcriticality parameter εc (i.e. a
mean offspring number of 1− εc per branching event), and with immigration of
individuals of type yε

k ∈ I, given by δyε
k,1, k ∈ N, at rate caε

k/ε2 with
∑

k aε
k = a

and limε→0 supk aε
k = 0. (The motivation for this comes from our geographical

model, we will see in Section 5 that this setting corresponds to the situation
where the surrounding population, which serves as the source of immigration,
is thought to have a frozen family structure.) Consider the rescaled process
{ηε

I(t)}t0≤t defined by

ηε
I(t, {yε

k} × (x1, x2)) := εHε
I (t, {yε

k} × (
x1

ε
,
x2

ε
)). (3.2.1)

Proposition 3.2.1 Assume that as ε → 0, ηε
I(t0) ⇒ µ0 ∈ M1(I × (0,∞)) and

αε → α in the sense of weak convergence of finite measures on I, where α is
a nonatomic measure whose total mass a = α(I) plays the role of the overall
immigration rate. Then as ε → 0,

{ηε
I(t, ·)}t0≤t =⇒ {ξI(t)}t0≤t

in the sense of weak convergence of M1(I × (0,∞))-valued càdlàg processes
on the time interval [t0,∞), where {ξI(t)} is the measure-valued diffusion with
generator

GF (µ) = f ′(〈µ, φ〉)〈µ,Gcφ〉+ 1
2f ′′(〈µ, φ〉)〈µ, φ2〉 (3.2.2)

+f ′(〈µ, φ〉)c ∫
∂φ
∂x (y, x)|x=0α(dy),

Gc is the operator given by (3.1.3) and D(G) denotes the class of functions of the
form Ff,φ(µ) = f(〈µ, φ〉) where f ∈ C3

b (R) and φ is continuous function on I ×
(0,∞) with ∂2φ(y,x)

∂x2 bounded and continuous on I × [0,∞) and | supy φ(y, x)| ≤
const · x.
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Proof. ηε is given by a pregenerator Gε acting on the class of bounded contin-
uous functions F on M1(I × (0,∞)) given by

GεF (µ) =
∑

k

caε
k

ε2
[F (µ + εδyε

k,ε)− F (µ)] (3.2.3)

+
1
2

∑

k

∞∑

j=1

[F (µ + εδyε
k,jε)− F (µ)]

µ(yε
k, jε)
ε2

+
1
2

∑

k

∞∑

j=1

[F (µ− εδyε
k,jε)− F (µ)]

µ(yε
k, jε)
ε2

+
1
2
(1− εc)

∑

k

∞∑

j=1

[F (µ− εδyε
k,jε + εδyε

k,(j+1)ε)− F (µ)]
jµ(yε

k, jε)
ε2

+
1
2
(1 + εc)

∑

k

∞∑

j=1

[F (µ− εδyε
k,jε + εδyε

k,(j−1)ε))− F (µ)]
jµ(yε

k, jε)
ε2

.

Here the first term comes from the immigration, the second and third from the
critical branching at the family level and the fourth and fifth from the subcritical
branching at the individual level with subcriticality parameter c > 0.

For F ∈ D(G), GεF takes the form

GεF (µ) (3.2.4)

=
∑

k

caε
k

ε2
[f(〈µ, φ〉+ εφ(yk, ε))− f(〈µ, φ〉)]

+
1
2

∑

k

∞∑

j=1

[f(〈µ, φ〉+ εφ(yk, jε))− f(〈µ, φ〉)]µ(yk, jε)
ε2

+
1
2

∑

k

∞∑

j=1

[f(〈µ, φ〉 − εφ(yk, jε))− f(〈µ, φ〉)]µ(yk, jε)
ε2

+
1
2
(1− εc)

∑

k

∞∑

j=1

[f(〈µ, φ〉 − εφ(yk, jε) + εφ(yk, (j + 1)ε)))− f(〈µ, φ〉)]

·jµ(yk, jε)
ε2

+
1
2
(1 + εc)

∑

k

∞∑

j=1

[f(〈µ, φ〉 − εφ(yk, jε) + εφ(yk, (j − 1)ε)))− f(〈µ, φ〉)]

·jµ(yk, jε)
ε2

Tightness of the family {ηε
I}0<ε≤1 is proved by a standard argument as

in [Wu] or [DZ]. Using a Taylor expansion for the functions f and φ it can
be verified that as ε → 0, for Ff,φ ∈ D(G), GεFf,φ(µ) → GFf,φ. Then by
Lemma 3.2.4 below, we obtain bounds on the third moments uniform in ε. Using

21



this and the tightness it follows that any limit point of the laws of the family
{ηε

I} satisfies the martingale problem associated to the generator G. Finally a
standard argument (e.g. [DP2], proof of Theorem 1.1) shows that any solution
of this martingale problem has Laplace functional given by

Eµ0 exp
(−

∫
f(u, x)ξI(t, dy, dx)

)
(3.2.5)

= exp
(
−

∫
Vtf(y, x)µ0(dy, dx)− c

∫ t

0

∫

I

∂

∂x
Vt−sf(y, x)

∣∣∣
x=0

α(dy) ds
)
,

where Vtf is given by the unique solution of the nonlinear p.d.e.

∂

∂t
Vtf =

1
2
x

∂2

∂x2
Vtf − cx

∂

∂x
Vtf − 1

2
(Vtf)2, (3.2.6)

V0f = f ∈ C+
0 (I × (0,∞)).

Therefore there is a unique limit point and the proof is complete.
For fixed c > 0, a > 0 and arbitrary atomless measure α on I = [0, 1] with

total mass a, let ξI(t, dy, dx) be as in Proposition 3.2.1. Consider the marginal
process

ξ(t, dx) :=
∫

I

ξI(t, dy, dx). (3.2.7)

We call ξ(t) a super subcritical Feller branching diffusion with individual immi-
gration (SSFBI) with initial state µ(dx) =

∫
I
µ0(dy, dx) (and parameters a, c).

The expression for the Laplace functional (3.2.5) (with f only a function of
x) shows that this coincides with the so-called immigration process with immi-
gration rate ac corresponding to the entrance law κt (given by (6.2.12) in the
Appendix) and starting from zero measure at time 0. The existence of a super-
process with immigration corresponding to an entrance law was first established
by [LS] (Thm. 1.1). The resulting Laplace transform of ξ(t) with zero initial
measure is given by

E exp (−〈ξ(t), f〉) = exp
(
−ac

∫ t

0

κ0+(Vsf)ds

)
, f ∈ C1(0,∞), (3.2.8)

see (3.1.18).

Corollary 3.2.2 (a) The random measure

β(t, dy) :=
∫

(0,∞)

xξI(t, dy, dx) =
∑

k

bk(t)δyk

is a purely atomic finite random measure on I in which the atoms bk(t)δyk

correspond to the aggregated mass at time t coming from immigrants of family
type yk ∈ I.
(b) For the corresponding family of stationary processes {η̄ε

I(t)}t∈R, the random
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measures η̄ε
I(0) converge to the equilibrium for the process with generator G

given by (3.2.2). The equilibrium random measure, ξa has Laplace functional

E exp (−〈ξa, f〉) = exp
(
−ac

∫ ∞

0

κ0+(Vsf)ds

)
, f ∈ C1(0,∞). (3.2.9)

Proof. (a) The random measure β(t, dy) on I has independent increments and
no fixed atoms and is therefore purely atomic (see [K], Chapt. 7).
(b) Given t0 < 0, ηε

I(0) can be decomposed into two parts - one coming from
the initial value at t0 and one from the immigration in the interval (t0, 0). From
Proposition 3.2.1 it follows that the immigration parts converge (in the sense
of weak convergence of probability measures on the space of càdlàg functions
D([t0, 0], M1(I × (0,∞))) to the diffusion limit with immigration, that is the
process with generator G. Next note that for each ε > 0 the contribution to
the aggregated measure at time 0 from the state at time t0 is stochastically de-
creasing to zero due to the subcriticality and the contribution from immigration
on (t0, 0) is stochastically increasing as t0 ↓ −∞. Moreover, using the moment
bounds from Lemma 3.2.4, it follows that the family of random measures η̄ε

I(0)
is tight. Therefore we have convergence to ξ̄I(0), the equilibrium state for the
process with generator G. The representation for the Laplace functional of ξa

follows by letting t →∞ in (3.2.8).

Remark 3.2.3 1. Corollary 3.2.2 (a) implies that for all δ > 0, asymptotically
as ε → 0 only a finite number of immigrant families contribute all but δ of the
mass. Each atom corresponds to an excursion from zero for the SSFBI process
and consists of descendants of only one immigrant family. In fact, we will see
that asymptotically at the particle level each immigrant family corresponds to
the descendants of one immigrating particle.

2. Note that the assumption ηε
I(t0) ⇒ µ ∈ M1(I × (0,∞)) in Proposition

3.2.1 puts constraints not only on the aggregated mass but also on the family
structure of the population. To understand what happens if this condition is
not satisfied consider ηε

I(t0) =
∑

aε
kδxε

k
with

∑
k aε

kxε
k = θ but infk xε

k → ∞
as ε → 0. In this case at times t > t0, ηε

I(t) → 0 due to ultimate extinction
of the critical family level branching. This observation is used below to prove
by contradiction that the equilibrium populations in B

(N)
` are asymptotically

composed of families of size O(N `/2).
3. Similarly, if the immigration mechanism is such that it feeds a few large

families rather than giving small new families a chance, then in the time sta-
tionary process the family branching makes everything extinct as ε → 0.

3.2.2 Moments

The following lemma was used in the proof of Corollary 3.2.2 and will also be
needed below. For the ease of notation we put t0 = 0, otherwise we would have
to replace t by t− t0.
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Lemma 3.2.4 For t > 0, let ηε(t, dx) :=
∫

I
ηε

I(t, dy, dx), where ηε
I is as in

(3.2.1). Let
mj,k(t) = E

[〈ηε(t), xj〉k]
, j, k ∈ N,

M(t) = E(〈ηε(t), x〉〈ηε(t), x2〉),
and oε(1) denote a term that is uniformly bounded in ε and converges to 0 as
ε → 0, and õ(t) denote a term that is uniformly bounded in t ≥ 0, and õ(t)
converges exponentially fast to 0 as t →∞, and |õ(t)| ≤ const · t for small t > 0.
Then
(a)

m1,1(t) = a(1− e−ct) + e−ctm1,1(0),

m2,1(t) =
a

2c
[1− 2e−ct + e−2ct] + m2,1(0)e−2ct +

m1,1(0)
c

(e−ct − e−2ct)

+
εa

2
(1− e−2ct),

m3,1(t) =
a

2c2
+ oε(1) + õ(t),

m4,1(t) =
3a

4c3
+ oε(1) + õ(t),

(b)

m1,2(t) = m1,2(0)e−2ct

+
a

4c2

{
1− 4e−ct + 2cte−ct + 3e−2ct

}

+a2
{
1− 2e−ct + e−2ct

}

+
m1,1(0)

c2

{
e−ct − cte−ct + 2ac2e−ct − e−2ct − 2ac2e−2ct

}

+
m2,1(0)

c
(te−2ct) +

ε2

2
{
a(1− e−2ct)

}

+
ε

4c
(3a− 2e−ct + 2ate−2ct + 4e−ct(−a + m1,1(0)) + ae−2ct − 4m1,1(0)e−2ct),

m2,2(t) =
3a

16c4
+ oε(1) + õ(t),

M(t) =
a

4c3
+

a2

2c
+ oε(1) + õ(t),

m1,3(t) =
3a2

4c2
+ a3 +

a

12c4
+ oε(1) + õ(t).
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Proof. The proof is obtained by applying the martingale problem with the
generator given by (3.2.3) and (3.2.4) to functions of the form F (µ) = f(〈µ, φ〉)
or F (µ) = f(〈µ, φ1〉, 〈µ, φ2〉) to derive the following moment equations:

dm1,1(t)
dt

= ca− cm1,1(t),

dm2,1(t)
dt

= m1,1(t)− 2cm2,1(t) + caε,

dm3,1(t)
dt

= caε2 + 3m2,1(t)− 3cm3,1(t) + o1(ε),

dm4,1(t)
dt

= caε3 + 6m3,1(t)− 4cm4,1(t) + o1(ε),

dm1,2(t)
dt

= m2,1(t)− 2cm1,2(t) + (2ca + ε)m1,1(t) + ε2ca,

dM(t)
dt

= cam2,1(t) + m3,1(t) + m1,2(t)− 3cM(t) + o1(ε),

dm2,2(t)
dt

= m4,1(t)− 4cm2,2(t) + o1(ε)

dm1,3(t)
dt

= 3cam1,2(t) + 3M(t)− 3cm1,3(t) + o1(ε).

Note that the coefficients of the o1(ε) terms only contain moments lower in the
hierarchy and hence are asymptotically negligible. The results were obtained
by solving this linear system using MAPLE.

Remark 3.2.5 In the case in which we replace the constant immigration rate
a by a random function of time a(·) the expression for m1,2(t) becomes

m1,2(t) = m1,2(0)e−2ct (3.2.10)

+
m1,1(0)

c2

{
e−ct − cte−ct + 2c2ae−ct − e−2ct − 2ac2e−2ct

}

+
1
c2

∫ t

0

k1(t, s)a(s)ds +
∫ t

0

∫ s2

0

k2(t, s2, s1)a(s1)a(s2)ds1ds2

+oε(1) ·
∫ t

0

k3(t, s)a(s)ds

where ki(t, ·), i = 1, 2, 3 are bounded non-negative kernels satisfying

sup
t

∫ t

0

ki(t, s)ds < ∞, i = 1, 3, sup
t

∫ t

0

∫ s2

0

k2(t, s2, s1)ds1ds2 < ∞ (3.2.11)

and oε(1) → 0 as ε → 0.
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3.2.3 SPDE representation

Let ξ be an SSFBI process starting from zero measure at time 0 as in subsec-
tion 3.2.1; recall that the Laplace transform of ξ(t) is given by (3.2.8). By an
argument similar to that of [LS] (Thm 1.2) it follows that there is a unique
orthogonal martingale measure M(ds dx) on [0,∞) × (0,∞) having quadratic
variation measure 〈M〉(ds dx) = ds ξ(s, dx) such that

〈ξ(t), f〉 − 〈ξ(0), f〉 (3.2.12)

=
∫ t

0

[〈ξ(s), Gcf〉+ ac κ0+(f)]ds +
∫ t

0

∫

(0,∞)

f(x)M(ds dx), f ∈ Dρ(Gc).

Proceeding as in the proof of Theorem 1.7. of [LS] and tracing the arguments
of [KS] one infers that ξ(t) has absolutely continuous states, that is, ξ(t, dx) =
ξ(t, x)dx, and that one can define a time-space white noise Ẇt(x) on an extension
of the original probability space such that

M(ds dx) =
√

ξ(s, x) Ẇs(x)ds dx. (3.2.13)

Moreover, ξ(t, x) is almost surely jointly continuous in (t, x) ∈ [0,∞) × (0,∞)
and is a solution of the SPDE (3.2.18) below. Note however that in contrast to
[LS], ξ(t, x) does not have a finite limit as x ↓ 0. Indeed, putting

Zt(x) =
∫ t

0

∫ ∞

0

pt−s(y, x)M(ds, dy) (3.2.14)

where p is the transition density of the c-FBD process (see section 6.2 in the
Appendix), we obtain as in [LS] ((4.10), (4.11)):

ξ(t, x) = Zt(x) +
∫ t

0

acκs(x)ds, x > 0. (3.2.15)

From (6.2.16) we obtain
∫ t

0

acκs(x)ds =
2ac

x
exp

( −2cx

1− e−ct

)
. (3.2.16)

Thus, E(
∫ 1

ε
ξ(t, x)dx) = C(t, ε)| log ε| where C(t, ε) is uniformly bounded

away from 0, and

Var
(∫ 1

ε

ξ(t, x)dx

)

= E
[∫ t

0

∫ ∞

0

f(s, y)M(ds, dy)
]2

= E
[∫ t

0

∫ ∞

0

f(s, y)2ξ(s, y)dy

]
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where

f(s, y) =
∫ 1

ε

pt−s(y, x)dx ≤ y

ε
∧ 1, and Eξ(s, y) ≤ ac

y
exp

( −2cy

1− e−cs

)
,

where we have used a stochastic Fubini theorem (cf. [IW] Chapt. 3, Lemma
4.1).

Therefore

Var
(∫ 1

ε

ξ(t, x)dx

)
≤ C1(t) + C2(t)| log ε|

for some positive constants C1(t), C2(t). We then obtain for any δ > 0

P

(∣∣∣
∫ 1

ε

ξ(t, x)dx− C(t)| log ε|
∣∣∣ > δC(t)| log ε|

)
≤ C1(t) + C2(t)| log ε|

(δC(t)| log ε|)2
(3.2.17)

and therefore
∫ 1

ε
ξ(t, x)dx converges in probability to ∞ as ε → 0. Since∫ 1

ε
ξ(t, x)dx is monotone in ε this convergence must be a.s., and thus ξ(t, x)

is a.s. unbounded as x → 0.

Finally, recalling (3.1.13) and (3.2.13), we see that (3.2.12) is the integral
form of the SPDE

∂

∂t
ξ(t, x) =

√
ξ(t, x) Ẇt(x) + G∗cξ(t, x)− caδ′0(x). (3.2.18)

Let us comment on the meaning of the three terms on the right hand side of
(3.2.18) viewed as the limiting family size process as N → ∞ in a ball B

(N)
` .

The first one comes from the family branching, the second one incorporates
the individual branching and individual emigration at rate c = c` from B

(N)
`

(recall that Gc is the generator of a c-subcritical Feller branching diffusion),
and the third term describes immigration of small families into B

(N)
` from the

surrounding medium at a large rate. In fact, δ′0 can be viewed as the limit
as ε → 0 of a large number 1/ε of small families of size ε; note that (1/ε)δε

converges to −δ′0 in the sense of Schwartz distributions on the smooth functions
vanishing at 0.

Weak uniqueness of the solution of (3.2.18) follows from Proposition 3.2.1;
however, as in the case of [KS] it is an open question whether strong uniqueness
holds.

The total (or aggregated) population size

ζ(t) =
∫

(0,∞)

x ξ(t, x) dx (3.2.19)

solves the equation

dζ(t) =

√∫

(0,∞)

x2ξ(t, x)dx dWt − c(ζ(t)− a) dt, (3.2.20)

which is a one-dimensional projection of equation (3.2.18). Note that the process
ζ is not Markov.
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3.2.4 Equilibrium canonical moments

As t →∞, the SSFBI process ξ(t) with parameters c and a converges in distri-
bution to the infinitely divisible equilibrium random measure ξa, cf. Corollary
3.2.2. Writing

ζa :=
∫

(0,∞)

xξa(dx) (3.2.21)

for the “aggregation” of ξa, and νc for the canonical measure of ζa, we obtain
from (3.2.8) and (3.1.18):

νc([b1, b2]) := c

∫ ∞

0

m([b1, b2])Kt(dm)dt, 0 < b1 < b2, (3.2.22)

According to Lemma 3.2.4, ζa has first and second moments

E[ζa] = a, E[(ζa)2] = a

(
a +

1
4c2

)
. (3.2.23)

Definition 3.2.6 Let us write ν̂c for the size-biasing of νc (cf subsection 6.1).

Because of the well-known relations (cf. Remark 4.5.2)

E[ζa] =
∫

(0,∞)

xνc(dx), E[(ζa)2] = E[ζa]

(
E[ζa] +

∫

(0,∞)

xν̂c(dx)

)

we obtain immediately from (3.2.23):

Remark 3.2.7 a)
∫
(0,∞)

xνc(dx) = 1
b)

∫
(0,∞)

x2νc(dx) = 1
4c2 .

Remark 3.2.8 We also note that infinitely many immigrant families contribute
to ζa. This follows from

νc(0,∞) = ∞. (3.2.24)

To see this note that from (3.2.22) and (3.1.12),

νc(0,∞) = c

∫ ∞

0

(− log P (ξ0
t = 0))dt.

For δ > 0, x > 0 let fδ(x) = x
δ ∧ 1. Recalling (3.1.7) and (3.1.10) note that

P (ξ0
t = 0) = lim

θ→∞
lim
ε→0

eVt(θfδ)(ε)/ε.

Then by a simple modification of [DH](6.10), for any δ > 0 and θ > 1

lim
ε→0

Vt(θfδ)(ε)
ε

≥ e−t lim
ε→0

Ttfδ(ε)
ε

≥ e−t

∫ ∞

δ

κt(x)dx.

Therefore by (6.2.16)

νc(0,∞) ≥ c lim
δ↓0

∫ ∞

0

e−t
( ∫ ∞

δ

κt(x)dx
)
dt = ∞.
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4 The genealogy of jumps in a cascade of sub-
ordinators

In this section we will carry out the program outlined in Subsection 2.1.1 to
obtain a representation for the sequence {ζθ

` } in terms of a cascade of subordi-
nators and then use this representation to obtain a genealogical description of
the population.

4.1 Propagation of equilibria

In the preceding section we encountered the equilibrium distribution for an R+-
valued process ζ(t), whose dynamics is given by (3.2.20). A simpler situation
is the one corresponding to one-level branching where we have the equilibrium,
ζa of

dζ(t) =
√

ζ(t)dW (t)− c(ζ(t)− a)dt, (4.1.1)

recall subsection 2.1. In this section we will derive structural results which are
common to both situations. We therefore denote the equilibrium states of (4.1.1)
and (3.2.20) by the same symbol ζa.

In both situations the dynamics has two parameters a and c, and the equi-
librium distribution is infinitely divisible with expectation a. Therefore as in
(2.1.1) this equilibrium distribution has a representation as

L(ζa) = L(S(a)), (4.1.2)

where S(τ), τ ≥ 0, is a subordinator with ES(τ) ≡ τ, τ ≥ 0.
Let us denote the Lévy measure of S by µ, and note that µ has expectation

1. Note that µ = νc (defined in subsection 3.2.4) if ζ follows the dynamics
(3.2.20), and µ = γc (given by (6.2.14)) if ζ follows the dynamics (4.1.1).

S(a) has a Lévy-Khinchin representation as a Poissonian superposition

S(a) =d
∑

i:τi≤a

yi, (4.1.3)

where
∑

i δ(τi,yi) is a Poisson population on R+× (0,∞) with intensity measure
dτ µ(dy). Since by (6.2.14), resp. (3.2.24),

µ(0,∞) = ∞ (4.1.4)

in the two cases, P (S(a) = 0) = 0 if a > 0 and S(·) has infinitely many jumps
in any open interval.

Since ζa is a Poisson superposition of immigrant clusters (recall (3.2.22)
and (6.2.13)), the representation (4.1.3) has a genealogical interpretation: the
summands yi measure the size of those parts of ζa which trace back to one and
the same immigrant.

Our aim in this section is to study the hierarchy (2.1.1) into which (4.1.1)
and (3.2.20) are embedded. In both situations, the parameters of the hierarchy
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are a sequence (c`)`=1,2,... of positive numbers. Recall that, for different levels
` in the hierarchy, the dynamics of ζ`(t) run at separated time scales, and
the equilibrium state ζ`+1 at level ` + 1 acts as (random) parameter a for the
dynamics at level `. Instead of one Lévy measure µ, we now have a sequence of
Lévy measures (µ`) ( which is either (γc`

) or (νc`
)).

In this way we obtain a Markovian dynamics which transports the equilibria
down the levels:

given ζ`+1 = a , ζ` is infinitely divisible with canonical measure aµ`. (4.1.5)

Since µ has expectation 1, (ζ`) constitutes a backward martingale. We now turn
to the following problems:

a) Find a condition on (µ`) which guarantees the existence of an entrance
law, denoted by ζθ

` , for (ζ`) starting in θ > 0 “at level ∞” and having constant
expectation θ.

b) Describe the “branching genealogy” underlying such an entrance law.
We will answer these questions in the next subsections. Later on, we will give

a relation with the asymptotics of the genealogy of the equilibrium branching
populations on ΩN as N →∞.

4.2 An entrance law from infinity

Let Sk, k = 1, 2, . . . be independent subordinators with Lévy measures µk. We
denote the second moment of µk by mk. For j > ` define the random variables

Sj
` (a) := S`(S`+1(. . . (Sj−1(a)))), (4.2.1)

and write Π`(a, .) for the distribution of S`(a), ` = 1, 2, ..., a > 0.

Proposition 4.2.1 If
∞∑

k=1

mk < ∞ (4.2.2)

then, for each θ > 0, the sequence of processes

(Sj
j−1(θ), Sj

j−2(θ), ..., Sj
2(θ), Sj

1(θ))

converges as j →∞ (component-wise) in probability to a sequence

(..., ζθ
2 , ζθ

1 )

which obeys
S`(ζθ

`+1) = ζθ
` a.s. for all ` (4.2.3)

and
lim

`→∞
ζθ
` = θ a.s. (4.2.4)

In particular, the distributions π` = L(ζθ
` ) are an entrance law for the backward

Markov chain with probability transition function

P (ζ` ∈ A|ζ`+1 = a) = Π`(a,A), (4.2.5)
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and they are its unique entrance law with the property

π` ⇒ δθ as ` →∞. (4.2.6)

Proof. Since Sk(a) is infinitely divisible with canonical measure aµ, we have

Var(Sk(a)) = amk.

Hence we obtain

Var(Sk+2
k (a)) = Var[E[Sk(Sk+1(a))|Sk+1(a)]] + E[Var[Sk(Sk+1(a))|Sk+1(a)]]

= a(mk+1 + mk).

In the same way we get for all j > k > `:

Var(Sj
k(a)) = a(mj−1 + ... + mk) (4.2.7)

and
E(Sj

` (a)− Sk
` (a))2 = a(mj−1 + ... + mk).

Thus, due to (4.2.2), for fixed ` the sequence (Sj
` (θ))j>` is Cauchy in L2. We

define
ζθ
` ≡ L2 − lim

j→∞
Sj

` (θ). (4.2.8)

Since a 7→ S`(a) is continuous in L1, we have

S`(ζθ
`+1) = S`( lim

j→∞
Sj

`+1(θ)) = lim
j→∞

Sj
` (θ) = ζθ

` a.s., (4.2.9)

which proves (4.2.3) and, a fortiori, implies (4.2.5). From (4.2.8) and (4.2.7) it
is clear that

Var ζθ
` = θ

∞∑

k=`

mk.

Since Eζθ
` ≡ θ, this together with (4.2.2) implies that ζθ

` converges to θ in
probability as ` → ∞. Moreover, since because of (4.2.3) ζθ

` is a backwards
martingale, this convergence is even a.s., and we have (4.2.4).

It remains to show the claimed uniqueness statement. For this let (πk) be
an entrance law for (Πk) obeying (4.2.6), and let Xk, k = 1, 2, ... be random
variables, independent of the subordinators S`, with

L(Xj) = πj .

From the entrance law property of (πk) and the definition of (Πk) we have for
all j > `:

π` = L(Sj
` (Xj)). (4.2.10)

On the other hand we have by monotonicity of τ 7→ Sj
` (τ):

E|Sj
` (Xj)− Sj

` (θ)| ≤ E|Xj − θ|.
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From this, the claimed identity π` = L(ζθ
` ) follows by Markov’s inequality to-

gether with (4.2.8) and (4.2.10).

Proof of Proposition 2.1.1
Recall that with the notation of Proposition 2.1.1, Π(1)

` (a, .) = L(S(1)
` (a)) and

Π(2)
` (a, .) = L(S(2)

` (a)), where S
(1)
` and S

(2)
` are subordinators with Lévy mea-

sures γ` and ν`, respectively. From Remark 6.2.3 we have that the second
moment of γk equals 1/(2ck), and Remark 3.2.7 shows that the second moment
of νk equals 1/(4c2

k). The proof of Proposition 2.1.1 is thus immediate from
Proposition 4.2.1.

4.3 The genealogy of jumps in an iteration of subordina-
tors

The composition of subordinators gives rise to a “genealogy” of their jumps. To
illustrate this, consider the two subordinators S1, S2, where

S1(b) =
∑

ti≤b

(S1(ti)− S1(ti−)),

S2(a) =
∑

τn≤a

(S2(τn)− S2(τn−)).

Then
S1(S2(a)) =

∑

τn≤a

∑

S2(τn−)<ti≤S2(τn)

(S1(ti)− S1(ti−)).

In this way, the jumps of S1 are coagulated into families of jumps stemming
from one and the same jump of S2.

Iterating this, we obtain from the flow property (4.2.3) that

ζθ
` =

∑

τi∈[0,ζθ
j ]

(Sj
` (τi)− Sj

` (τi−)) a.s. , (4.3.1)

where {τi} is the set of all points in [0, ζθ
j ] in which τ 7→ Sj

` (τ) has a jump.
The representation (4.3.1) induces a partition of [0, ζθ

` ] which we denote by
Pj,`. Note that for fixed ` the Pj,` are coalescing (i.e. becoming coarser) as j
increases.

The sequence of coalescing partitions Pj,` induces a graph G` as follows:
The set of nodes of G` is the union

⋃
j≥`{j} ×Pj,`. For n ∈ G` we call its first

component the level of n. For two nodes n1 = (j1, I1), n2 = (j2, I2) of G` we
say that n1 is an ancestor of n2 if j1 > j2 and I2 ⊆ I1, and we say that n1 is the
parent of n2 if n1 is the ancestor of n2 with j1 = j2 + 1. The (directed) edges of
G` then are all the parent-child pairs in G` ×G`. Say that two nodes in G` are
related if they have a common ancestor. Then by construction of the sequence
(Pj,`) each equivalence class of G` is a tree, i.e. a directed connected graph
without cycles. Therefore, G` is a forest, i.e. a union of pairwise disconnected
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trees. Finally, we label each node of G` with the length of the subinterval of
[0, ζθ

` ] to which it corresponds, thus arriving at the random labelled forest F`

which we associate with the random sequence of coalescing partitions Pj,`, and
which encodes the genealogy of the jumps of the process (..., ζθ

2 , ζθ
1 ) constructed

in Proposition 4.2.1.
Intuitively, viewing [0, ζθ

` ] as a continuum of individuals, this means that
two individuals a1, a2 ∈ [0, ζθ

` ] belong to the same element of Pj,` if and only if
they descend from a common ancestor (or equivalently, from one subordinator
jump) at some level less or equal than j. Furthermore two individuals a1, a2 ∈
[0, ζθ

` ] belong to the same element of the minimal partition P∞,` if and only if
they descend from a common ancestor at any level higher than `. Using the
independent increments property in θ, (4.1.4) and (4.2.9) it can be shown that
there are countably many distinct elements in P∞,` each corresponding to an
infinite tree. Therefore we have a decomposition of the equilibrium population
into a countable set of subpopulations each consisting of individuals having a
common ancestor.

4.4 The genealogy in the hierarchichal mean field limit

With the special choice of (S`) described at the beginning of this section, we
have all reasons to conjecture that the random labelled forests F` defined in the
previous subsection describe the genealogy of the (one- or two-level) branching
population in equilibrium as N →∞.

To make this more precise, consider a fixed sequence B
(N)
` , ` = 1, 2, ... of

nested balls in ΩN , and let P(N)
` be that part of the equilibrium population

which lives in B
(N)
` . (Here and below we suppress the notation of θ > 0 which

we keep fixed.) Fix N and ` for the moment. For two individuals I1, I2 in P(N)
`

and j ≥ ` we say that
I1 ∼j I2

if I1 and I2 have a common ancestor in B
(N)
j . This induces a partition on P(N)

`

which we denote by P
(N)
j,` . The sequence P

(N)
j,` , j = `, ` + 1, ... is coalescing,

and we can associate with it a labelled forest F
(N)
` in the same way as we

associated F` with Pj,` in the previous subsection, the only difference being
that now we label the nodes of F

(N)
` by the cardinalities of their corresponding

sub-populations of P(N)
` , divided by N `.

Our main result (Theorem 2.4.1) suggests to conjecture that, in a suitable
topology,

F
(N)
` → F` as N →∞.

4.5 Size-biasing iterated subordinators

With a view towards the genealogy of a sampled individual (see subsection 4.6)
we will now prove a representation of the size-biasing of L(Sj

` (a)), where Sj
` is
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the composition of subordinators defined in (4.2.1). To this purpose we first
consider a single subordinator S evaluated at a random argument.

Proposition 4.5.1 Let S(τ), τ ≥ 0, be a subordinator with Lévy measure de-
noted by µ, and let A be an R+-valued random variable independent of S and
with finite expectation. Then the size-biasing of L(S(A)) arises as the distribu-
tion of S(Â)+Ŷ , where L(Â) is the size-biasing of L(A), L(Ŷ ) is the size-biasing
of µ, and Â and Ŷ are independent.

Proof. We write Πτµ for the distribution of a Poisson point configuration on
R+ with intensity measure τµ. Then

L(S(τ)) = Lτ (〈Ψ, idR+〉),
where

Lτ (Ψ) = Πτµ.

Writing σ for the distribution of A, we thus have

L(S(A)) = Lσ(〈Ψ, idR+〉), (4.5.1)

where
Lσ(Ψ) =

∫
Πτµ(.)σ(dτ).

Our task is to compute the size-biasing of Lσ(〈Ψ, idR+〉) with s(ψ) = 〈ψ, idR+〉,
cf. Definition 6.1.1. To this end let us first compute the size-biasing of Lσ(Ψ)
with 〈ψ, idR+〉, and then project. It follows from Corollary 6.1.4 in the Appendix
that the size-biasing of Lσ(Ψ) with 〈ψ, idR+〉 is L(Φ + δŶ ), where

L(Φ) =
∫

Πτµ(.)σ̂(dτ),

σ̂ is the size-biasing of σ, L(Ŷ ) is the size-biasing of µ, and Φ and Ŷ are inde-
pendent. Consequently, the size-biasing of Lσ(〈Ψ, idR+〉) with 〈ψ, idR+〉 is

L(〈Φ + δŶ , idR+〉) = L(S(Â) + Ŷ )),

where L(Â) = σ̂, and S, Â and Ŷ are independent. Together with (4.5.1) this
proves the claim.

Remark 4.5.2 For deterministic A, Proposition 4.5.1 renders the well-known
fact that the size-biasing of an infinitely divisible distribution π on R+ is the
convolution of π with the size-biasing of the canonical measure of π.

Corollary 4.5.3 Let Sj
` (a) be the iteration of subordinators defined in (4.2.1),

where the Sk are independent subordinators with Lévy measures µk. Then the
size-biasing of L(Sj

` (a)) arises as the distribution of Ŝj
` (a) defined by

Ŝj
` (a) = Sj

` (a) + S̃j−1
` (Ŷj−1) + S̃j−2

` (Ŷj−2) + ... + S̃`+1
` (Ŷ`+1) + Ŷ`, (4.5.2)

where L(Ŷk) is the size-biasing of µk, S̃k
` is distributed as Sk

` and all random
variables occurring on the r.h.s. of (4.5.2) are independent.
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Proof. For ` = j−1, Proposition 4.5.1 shows that the size-biasing of L(Sj
j−1(a)) =

L(Sj−1(a)) arises as the distribution of

Sj−1(a) + Ŷj−1,

where both summands are independent. One more application of Proposition
4.5.1 thus gives that the size-biasing of L(Sj

j−2(a)) = L(Sj−2(S
j
j−1(a)) arises as

the distribution of
Sj−2(Sj−1(a) + Ŷj−1) + Ŷj−2

which due to the independence of Sj−1(a) and Ŷj−1 equals in distribution to

Sj−2(Sj−1(a)) + S′j−2(Ŷj−1) + Ŷj−2,

S′j−2 being an independent copy of Sj−2.
Iterating the argument we arrive at our assertion.

Remark 4.5.4 As before, let us denote the second moment of µk (or equiva-
lently the first moment of Ŷk) by mk. From (4.5.2) it follows that

EŜj
` (a) = a +

j−1∑

k=`

mk (4.5.3)

Hence the summability of the mk is a sufficient condition for tightness of the
Ŝj

` (a).

We now turn to the entrance law constructed in Proposition 4.2.1.

Corollary 4.5.5 From (4.2.8) and Corollary 4.5.3 we obtain that the size-
biasing of L(ζθ

` ) arises as the distribution of

ζ̂θ
` ≡ Ŷ` + S̃`+1

` (Ŷ`+1) + S̃`+2
` (Ŷ`+2) + .... + ζθ

` , (4.5.4)

where the random variables Ŷk and S̃k
` are as in Corollary 4.5.2, and all random

variables occurring on the right hand side of (4.5.4) are independent.

We can go one step further and study the genealogical relationships under-
lying the representation (4.5.4).

To this purpose, let us study the branching dynamics on the “populations
of jumps” induced by the composition of the subordinators Sk, resuming the
reasoning of subsection 4.3. For each k we consider a branching dynamics which
takes a counting measure φk on R+ into a random counting measure Φk−1 in
the following way: If φk =

∑
i∈Ik

δyi , then

Φk−1 =
∑

i∈Ik

Ψi,

where Ψi is a Poisson counting measure on R+ with intensity measure yiµk−1,
and the Ψi are independent.
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Now fix two levels j, ` ∈ N with j > `. Starting with φj = δa, and iterating
the branching dynamics from level j down to level `, we construct a random
path of counting measures on R+ which we denote by

(δa, Φj
j−1(a), . . . , Φj

`(a)) =: Hj
` (a).

By keeping track which atom in Φj
k−1(a) stems from which atom in Φj

k(a), we
can enrich the history Hj

` (a) to a tree T j
` (a), each of whose nodes is marked by

a non-negative real number. For example, if Φj
k(a) =

∑
i∈Ik

δyi
, j ≥ k ≥ `, then

the set of nodes of T j
` (a) at level k corresponds to the index set Ik, and yi is

the mark (or “size”) of the node with index i. We write

s(T j
` (a)) = 〈Φj

`(a), idR+〉

for the total size of the tree T j
` (a) at level `, and note that

s(T j
` (a)) =d Aj

`(a),

where Sj
` (a) is defined in (4.2.1). Proceeding in a similar way as in the proof

of Corollary 4.5.3 we obtain a “spinal decomposition” of the size-biased tree,
which we state here without proof.

Proposition 4.5.6 The size-biasing of L(T j
` (a)) with s(T j

` (a)) arises as the
distribution of the superposition of T j

` (a) and

(δŶj−1
, . . . , δŶk

,Φk
k−1(Ŷk), . . . , Φk

` (Ŷk)), k = j − 1, j − 2, . . . , `,

where L(Ŷk) is the size-biasing of µk, T j
` (a), Ŷj−1, . . . , Ŷ` are independent, and

given Ŷj−1, . . . , Ŷ`, the Φk
r (Ŷk), k > r, are independent.

Under the assumption (4.2.2) of summability of the second moments of µk,
k ∈ N, the size-biasing of the random labelled forest F` = Fθ

` (constructed in
subsection 4.3) with respect to its “ size” s(Fθ

` ) = ζθ
` arises as the independent

superposition of Fθ
` and T̂∞,can

` , where T̂∞,can
` is constructed as follows:

First build a “spine” (. . . , Ŷ`−2, Ŷ`−1, Ŷ`), and given the spine, superimpose
independently the trees T k

` (Ŷk), k ≥ `.

4.6 The genealogy of relatives of a sampled individual

In subsection 4.3 we fixed a ball (or `-block) B
(N)
` from the beginning. Now

we take a different viewpoint and think of an individual sampled from the equi-
librium population within a union of many `-blocks in ΩN from the beginning.
Denote the chosen individual by I, and the `-block by B̂`. Recall that for large
N the total number of individuals in an `-block is approximately distributed like
N `ζ` (see Theorem 2.4.1), we see that the number of individuals in the chosen
block is approximately distributed like N `ζ̂θ

` , where L(ζ̂θ
` ) is the size-biasing of

L(ζθ
` ).
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The block B̂` sits in a nested sequence of blocks of levels `+1, `+2, . . . which
we denote by B̂`+1, B̂`+2, . . . Consider the population P̂` of all those individuals
in B̂` which have an ancestral family in common with the individual I. The
population P̂` can be decomposed in a natural way according to its immigration
history into the B̂j , j ≥ `.

For j > `, denote by P̂j
` the subpopulation of all those individuals in P̂`

that have some common ancestor with I who lived in B̂j but none who lived in
B̂j−1. In other words, P̂j

` consists of all those individuals J which obey J ∼j I
but not J ∼j−1 I.

In this way we obtain a decomposition of P̂` according to the hierarchical
distance of the (geographically) closest ancestors common with the chosen in-
dividual I: for j > `, the subpopulation P̂j

` consists of those individuals in B̂`

whose geographically closest common ancestor with I has hierarchical distance
j from I.

The size (i.e. the total number of individuals) of P̂j
` is approximately dis-

tributed as
N `Sj−1

` (Ŷj−1) = N `S`(S`−1 . . . (Sj−2(Ŷj−1)))

and thus has approximate expectation N ` 1
4c2

j−1
. Hence the summability con-

dition (4.2.2) (which corresponds to the condition for transience resp. strong
transience of the hierarchical random walk) amounts precisely to an expected
finite number of relatives of the chosen individual in the block B̂`.

5 The hierarchical mean field limit of two-level
branching systems in equilibrium

In this section we investigate the two level branching equilibrium Ψ(N,θ)(0)
described in Proposition 2.3.5 and its limiting behavior as N →∞. We assume
that the underlying random walk is a (2, (c`), N)-random walk on ΩN and (c`)
satisfies the strong transience conditions (2.3.9) and (2.3.10). Recall that (B(N)

` )
denotes a sequence of nested blocks in ΩN .

We will see in Lemma 5.2.1 that in equilibrium, asymptotically as N →∞,
Ψ(N,θ)(0) consists of the order of N `/2 families in B

(N)
` , a typical such family

having a random multiple of N `/2 individuals.

5.1 A spatial ergodic theorem

In this subsection we first collect some basic facts about the two level branch-
ing systems Ψ(N)(t) on ΩN which were introduced in section 2.2.6 and their
equilibria. The main result will be a spatial ergodic theorem for the aggregated
equilibria; this will also be an ingredient in the proof of Theorem 2.4.1.

Let Mc(ΩN ) \ {o} denote the space of non-zero counting measures on ΩN

such that finite sets have finite measure, and let M1(M(ΩN ) \ {o}) be the set
of measures ν on Mc(ΩN ) \ {o} such that

∫
M(ΩN )\{o} µ(B)ν(dµ) < ∞ if B
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is a finite set. Then let M1
c (Mc(ΩN ) \ {o}) denote the subspace of counting

measures in M1(Mc(ΩN ) \ {o}). The set Mc(ΩN ) \ {o} carries a complete
separable metric ρ which generates the restriction of the vague topology on
Mc(ΩN ) to Mc(ΩN )\{o} and makes a subset of Mc(ΩN ) bounded if and only if
it is contained in {µ|µ(B) > 0 for some finite B ⊂ ΩN}, see [MKM] Proposition
3.3.2. The set M1(Mc(ΩN ) \ {o}) is equipped with the topology generated
by ν 7→ ∫

Mc(ΩN )\{o} µ(B)ν(dµ), where B is a finite subset of ΩN , and ν 7→∫
F (µ)ν(dµ), where F : Mc(ΩN ) \ {o} → R is continuous, bounded and with

ρ-bounded support.
We can represent Ψ(N)(t) as a càdlàg Markov process with state space

M1
c (Mc(ΩN ) \ {o}). On M1

c (Mc(ΩN ) \ {o}), we consider the class of func-
tions D(GΩN ) = {H(ν) = h

(∫
F (µ)ν(dµ)

)} with F (µ) = f(〈µ, ϕ〉) where ϕ
has finite support and h, f are continuous functions on R with bounded second
derivatives. We also define

δF (µ)
δµ(x)

=
d

dε
F (µ+εδx)

∣∣
ε=0

,
δ2F (µ)

δµ(x)δµ(y)
=

∂2

∂ε1∂ε2
F (µ+ε1δx +ε2δy)

∣∣
ε1=ε2=0

.

Then Ψ(N) is the unique solution to the martingale problem given by the
generator

GΩN H(ν) (5.1.1)

=
∑

x∈ΩN

∫
ν(dµ)h′(

∫
F (µ)ν(dµ))

·
[

δF (µ)
δµ(x)

( ∞∑

k=1

ck+1

Nk/2
(µ̄k(x)− µ(x))

)
+

δ2F (µ)
δµ(x)δµ(x)

µ(x)

]

+
∫

h′′(
∫

F (µ)ν(dµ))F 2(µ)ν(dµ)

where
µ̄k(x) =

1
Nk

∑

y∈ΩN :dN (y,x)≤k

µ(y).

Proposition 2.3.5 establishes the existence of a non-trivial equilibrium Ψ(N,θ)

that is spatially homogeneous (that is, with law invariant under translations in
ΩN ) and mean θ. The equilibrium random field {ψ(N,θ)

x (t)}x∈ΩN
is defined by

ψ(N,θ)
x (t) =

∫
µ(x)Ψ(N,θ)(t, dµ). (5.1.2)

This gives the total number of individuals at site x irrespective of their family
memberships.

Recall that {η(N,θ)
` (t, dx)} defined in (2.4.11) describes the equilibrium nor-

malized family size process in the block B
(N)
` with mean number θ individuals

per site.
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Also recall that the normalized equilibrium population mass in B
(N)
` is given

by (see (2.4.13),(2.4.14)

ζ
(N,θ)
` (t) =

∫
xη

(N,θ)
` (t, dx) =

1
N `

∑

x∈B
(N)
`

ψ(N,θ)
x (N `/2t)

=
1

N `

∑

x∈B
(N)
`

∫
µ(x)Ψ(N,θ)(N `/2t, dµ). (5.1.3)

Lemma 5.1.1 Let GN denote the Green operator of the (2, (cj), N)-random
walk with (cj) satisfying condition (2.3.10) for strong transience, and write, for
ϕ1, ϕ2 : ΩN → R+,

〈ϕ1, ϕ2〉 =
∑

x∈ΩN

ϕ1(x)ϕ2(x).

Then

〈ϕ1, GNϕ2〉 ≤ const
∑

x,y∈ΩN

ϕ1(x)ϕ2(y)
N |x−y|/2

(5.1.4)

and

〈ϕ1, G
2
Nϕ2〉 ≤ const

∑

x,y∈ΩN

ϕ1(x)ϕ2(y)
∞∑

j=|x−y|

1
c2
j

(5.1.5)

where the constants do not depend on N . Hence

〈ϕ1, GNϕ2〉 ≤ const〈1, ϕ1〉〈1, ϕ2〉, (5.1.6)
〈ϕ1, G

2
Nϕ2〉 ≤ const〈1, ϕ1〉〈1, ϕ2〉. (5.1.7)

Proof. The transition probability pt(x, y) of the (2, (cj), N)-random walk
is given by

pt(x, y) = (δ0,|x−y| − 1)
e
−h

(N)
|x−y|t

N |x−y| + (N − 1)
∞∑

j=|x−y|+1

e−h
(N)
j t

N j
(5.1.8)

where the h
(N)
j are positive numbers (depending on N) such that

h
(N)
j ≥ const

cj−1

N (j−1)/2
, j ≥ 1

(see [DGW2]). Hence

GNϕ(x) =
∫ ∞

0

∑
y

pt(x, y)ϕ(y)dt

≤ (N − 1)
∑

y

ϕ(y)
∞∑

j=|x−y|+1

1

N jh
(N)
j

39



≤ const(N − 1)
∑

y

ϕ(y)
∞∑

j=|x−y|+1

N (j−1)/2

N jcj−1

≤ const
∑

y

ϕ(y)
∞∑

j=|x−y|

1
N j/2cj

≤ const
∑

y

ϕ(y)
∞∑

j=|x−y|

1
N j/2

≤ const
∑

y

ϕ(y)
1

N |x−y|/2
,

and then (5.1.4) follows.
Similarly (see [DGW2])

G2
Nϕ(x) =

∫ ∞

0

t

(∑
y

pt(x, y)ϕ(y)

)
dt

≤ (N − 1)
∑

y

ϕ(y)
∞∑

j=|x−y|+1

1

N j(h(N)
j )2

≤ const(N − 1)
∑

y

ϕ(y)
∞∑

j=|x−y|+1

N j−1

N jc2
j−1

≤ const
∑

y

ϕ(y)
∞∑

j=|x−y|

1
c2
j

and (5.1.5) follows.

Remark 5.1.2 In [DGW2] the exponential waiting time of the hierarchical ran-
dom walk has parameter 1, whereas here this parameter is

∑
` q

(N)
` , see subsec-

tion 2.2.1. In the present case,
∑

` q
(N)
` =

∑∞
j=0

cj

Nj/2 =: LN . This amounts

to a time change t → LN t in the calculations above, which produces LNh
(N)
j in

place of h
(N)
j and does not change the results of Lemma 5.1.1 (assuming c0 > 0).

The following is the analogue of [DGW1](2.3.3).

Proposition 5.1.3 Under the conditions of Lemma 5.1.1, the first and second
moments of ζ

(N,θ)
` (0) are given by

Eζ
(N,θ)
` (0) = θ

and

E
(
ζ
(N,θ)
` (0)

)2

= θ2 + θ(〈ϕN,`, ϕN,`〉+ 〈ϕN,`, GNϕN,`〉+
1
4
〈ϕN,`, G

2
NϕN,`〉)

(5.1.9)
where ϕN,`(x) = 1

N` 1
B

(N)
`

(x) and GN is the Green operator of the (strongly
transient) (2, (c`), N)-random walk.
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Corollary 5.1.4 If the (2, (cj), N)-random walk satisfies conditions (2.2.2) and
(2.3.10), then for each `
(a)

sup
N

E((ζ(N,θ)
` (0))2) < ∞. (5.1.10)

(b)
Var(ζ(N,θ)

` (0)) → 0 as ` →∞ (5.1.11)

uniformly in N .

Proof. (a) follows immediately from Proposition 5.1.3 and Lemma 5.1.1.
(b) From Proposition 5.1.3

Var(ζ(N,θ
` (0)) = θ(〈ϕN,`, ϕN,`〉+ 〈ϕN,`, GNϕN,`〉+

1
4
〈ϕN,`, G

2
NϕN,`〉) (5.1.12)

We will show that each of the three terms on the r.h.s. of (5.1.12) converges to
0 as ` → ∞ uniformly in N . First 〈ϕN,`, ϕN,`〉 ≤ 1

N` → 0 as ` → ∞ uniformly
in N .

We have from (5.1.4) and using the ultrametric property of | · |,

〈ϕN,`, GNϕN,`〉 ≤ const
1

N2`

∑

|x|,|y|≤`

1
N |x−y|/2

≤ const
1

N2`


N ` +

∑

x 6=y, |x|≤|y|≤`

1
N |y|/2




≤ const
1

N2`

(
N ` +

∑̀

k=1

N2k

Nk/2

)

= const
1

N2`

(
N ` +

N (`+1)3/2 −N3/2

N3/2 − 1

)

≤ const
(

1
N `

+
1

N `/2

)
−→ 0 as ` →∞

uniformly in N , and from (5.1.5), again using the ultrametric property,

〈ϕN,`, G
2
NϕN,`〉 ≤ const

1
N2`

∑

|x|,|y|≤`

∞∑

j=|x−y|

1
c2
j

≤ const
1

N2`


N `

∞∑

j=0

1
c2
j

+
∑

x 6=y, |x|≤|y|≤`

∞∑

j=|y|

1
c2
j




≤ const
1

N2`


N ` +

∑̀

k=1

N2k
∞∑

j=k

1
c2
j
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≤ const
1

N2`


N ` +

∞∑

j=1

1
c2
j

j∧∑̀

k=1

N2k




≤ const
1

N2`


N ` +

∞∑

j=1

1
c2
j

N2(j∧`)




= const


 1

N `
+

`−1∑

j=1

1
c2
j

1
N2(`−j)

+
∞∑

j=`

1
c2
j


 . (5.1.13)

The first term goes to zero as ` → ∞, the second term goes to zero as ` → ∞
by dominated convergence, and clearly the last term goes to zero as ` → ∞.
Therefore

〈ϕN,`, G
2
NϕN,`〉 → 0 as ` →∞ uniformly in N. (5.1.14)

Remark 5.1.5 (a)

lim
N→∞

Var(ζ(N,θ)
` (0)) = θ

∞∑

j=`

1
c2
j

. (5.1.15)

(b)

〈ϕN,`, G
2
NϕN,`〉 ≤ const


 1

N `
+

1
N2

+
∞∑

j=`

1
c2
j


 (5.1.16)

Corollary 5.1.6 Consider the “exterior function”

ϕN,`,ext(x) =
∞∑

k=1

c`+k−1

N `+2k−1
1

B
(N)
`+k

(x). (5.1.17)

Then

E




( ∑

x∈ΩN

ϕN,`,ext(x)
∫

µ(x)Ψ(N,θ)(0, dµ)

)2



= E




( ∞∑

k=1

c`+k−1

Nk−1
ζ
(N,θ)
`+k (0)

)2

 < ∞ (5.1.18)

uniformly in N .

Proof. As in Proposition 5.1.3, (from [DGW1], comment 2.3.5)

E




( ∑

x∈ΩN

ϕN,`,ext(x)
∫

µ(x)Ψ(N,θ)(0, dµ)

)2

 (5.1.19)

= θ2〈1, ϕN,`,ext〉2 + θ(〈ϕN,`,ext, ϕN,`,ext〉
+〈ϕN,`,ext, GNϕN,`,ext〉+

1
2
〈ϕN,`,ext, G

2
NϕN,`,ext〉).
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We will prove that each term on the r.h.s. of (5.1.19) is bounded uniformly in
N .

〈1, ϕN,`,ext〉 =
∞∑

k=1

c`+k−1

N `+2k−1

+
∞∑

k=1

c`+k−1

N `+2k−1

`+k∑
n=1

(N − 1)Nn−1

≤
∞∑

k=1

c`+k−1

N `+2k−1
+

∞∑

k=1

c`+k−1

N `+2k−1
N `+k

≤ const
∞∑

k=1

c`+k−1

Nk

< ∞ uniformly in N.

Then, from (5.1.6) the terms 〈ϕN,`,ext, GNϕN,`,ext〉 and 〈ϕN,`,ext, G
2
NϕN,`,ext〉

are bounded uniformly in N and since ϕN,`,ext has a uniform bound in N as
well, using (2.2.2) we see that 〈ϕN,`,ext, ϕN,`,ext〉 is also bounded uniformly in
N (with N > sup c`+1/c`).

Theorem 5.1.7 (Spatial ergodic theorem) The pointwise ergodic theorem
holds on ΩN , that is,

lim
j→∞

ζ
(N,θ)
j (0) = θ a.s. (5.1.20)

Proof. First note that the equilibrium random field {ψ(N,θ)
x }x∈ΩN defined by

(5.1.2) is invariant under the action of the group ΩN , and E(ψ(N,θ
x ) = θ. More-

over by (5.1.11) the spatial averages ζ
(N,θ)
` (0) = 1

N`

∑
x∈B

(N)
`

ψ
(N,θ)
x (0) satisfy

lim
j→∞

Var(ζ(N,θ)
j (0)) = 0,

so that the convergence in probability follows. To complete the proof note that
ΩN is an amenable group and the collection of balls {B(N)

` }`∈N is a tempered
Følner sequence. The a.s. pointwise convergence then follows by [Lin](Theorem
1.2).

5.2 Reduction to two successive scales

In the section we show that the analysis of the multiscale behavior can be
reduced to the case of two successive scales.

5.2.1 The equilibrium family size process

Let {ζ(N,θ)
` (t), t ∈ R}`=...,2,1 denote the collection of equilibrium block average

processes in the nested sequence of blocks B
(N)
` (see (5.1.3)).
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Lemma 5.2.1 The fixed time marginal distributions {ζ(N,θ)
` (0)} at time t = 0

satisfy:
(a) For each ` ∈ N the family {ζ(N,θ)

` (0)}N∈N is tight and every limit point has
expected value θ.
(b) The family-size constraint

E
[∫ ∞

K

xη
(N,θ)
` (0, dx)

]
≤ const

K
(5.2.1)

is satisfied for a suitable constant not depending on K > 0 and N ≥ 2.

Proof. (a) follows immediately from Corollary 5.1.4.
(b) Let ϕN

` (x) = 1
N` 1

B
(N)
`

(x). Then

E
[∫ ∞

K

xη
(N,θ)
` (0, dx)

]
≤ 1

K
E

[∫ ∞

0

x2η
(N,θ)
` (0, dx)

]

≤ 1
K
E

[∫ ∞

0

x2η
(N,θ)
` (0, dx)

]

=
1
K

1
N3`/2

E
[∫

(µ(B(N)
` ))2Ψ(N,θ)(0, dµ)

]

=
1
K

N `/2E
[∫

(µ(ϕN
` ))2Ψ(N,θ)(0, dµ)

]

=
N `/2

K

[
〈ϕN

` , ϕN
` 〉+

1
2
〈ϕN

` , GNϕN
` 〉

]
(by [DGW1](2.3.1))

≤ N `/2

K
const

(
1

N `
+

1
N `/2

)
(by the proof of Corollary 5.1.4)

≤ const
K

.

Remark 5.2.2 Part (b) of the Lemma 5.2.1 implies that asymptotically the
restriction of Ψ(N,θ)(0) to the ball B

(N)
` consists of families of size O(N `/2) or

smaller.

5.2.2 Distant immigrants

In order to establish that there is a unique limit law and to identify it we now
return to the dynamical picture. In the next lemma we show that the expected
contribution to the equilibrium population in a ball B

(N)
` coming from immi-

grants who immigrate directly from outside the ball B
(N)
`+1 and the descendants

of the population in the ball B
(N)
` in the distant past are both negligible.
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Lemma 5.2.3 (a) Let {ζ(N,θ)
`,ext (0)} denote the contribution to the equilibrium

block average in the ball B
(N)
` at time 0 coming from individuals immigrating

directly from (B(N)
`+1)c. Then

E
(
ζ
(N,θ)
`,ext (0)

)
≤ const

N
1
2

.

(b) The expected mass to enter B
(N)
`+1 from (B(N)

`+1)c in a time interval of length
N `/2 is O( 1

N1/2 ).

(c) The expected contribution to the population in the ball B
(N)
` at time 0 from

the descendants of individuals alive at time t0 is of order O(e−c`|t0|) as t0 →
−∞.

Proof. (a) To verify this, we first note that the total number of individuals to
immigrate from B

(N)
`+k with k ≥ 2 to B

(N)
` in the time interval [−N `/2t,−N `/2(t+

dt)) is of the order

(ζ(N,θ)
`+k (−t)N `+k)× (

c`+k−1

N (`+k−1)/2
)× 1

Nk
× dtN `/2

where the first factor is the number of particles in B
(N)
`+k, the second factor is the

rate of migration of each of these particles to a point chosen randomly in B
(N)
`+k,

the third factor is the probability this point falls in the tagged ball B
(N)
` and

the last factor is the length of the time period. Recalling that the mass process
in B

(N)
` is subcritical with parameter c`

N`/2 , the expected total mass at time 0

coming from immigration from outside B
(N)
`+1 in the time interval [−N `/2T, 0),

T > 0, is of the order

∑

k≥2

∫ 0

−T

c`+k−1

N (k−1)/2
×N ` × ec`tE(ζ(N,θ)

`+k (−t))dt (5.2.1)

≤ const× N `

N1/2
,

uniformly in T and `, where we have used the assumption (2.2.2). Therefore the
expected mass (normalized by 1

N` ) at time 0 in B
(N)
` that immigrated during

the time interval [N `/2t0, 0) directly from outside B
(N)
`+1 is O(N− 1

2 ) as N →∞.
(b) and (c) follow from a first moment calculation.

5.3 Diffusion limit of the family size process in two spatial
scales

In this section we consider the asymptotic (as N → ∞) time development of
the population occupying B

(N)
`+1 and in particular the subpopulation obtained by
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considering individuals that occupy a tagged ball B
(N)
` in the natural time scale

for the population in B
(N)
` and assuming that the initial family size processes

in B
(N)
`+1 satisfy the family size constraint of Lemma 5.2.1.

As a result of the previous lemma, asymptotically as N →∞ and t0 → −∞
the equilibrium population in B

(N)
` consists of the descendants of immigrants

coming from B
(N)
`+1 during the time interval (−N−`/2t0, 0] (recall Remark 2.3.4).

Another key point is that, as we verify below, in this time interval the family
size process in B

(N)
`+1 is asymptotically constant. Moreover from Lemma 5.2.1 all

but an arbitrarily small proportion of the population in B
(N)
`+1 is structured into

O(N (`+1)/2) families containing O(N (`+1)/2) individuals.
We next show that in the N `/2-time scale the total population structure in

the ball B
(N)
`+1 is essentially constant.

Lemma 5.3.1 Let {ζ(N,θ)
`+1 (s)} be the equilibrium normalized process (see (5.1.3))

in its natural time scale N (`+1)/2.
For t0 = t0(N) < 0 such that |t0|

N
1
2

< c,

P

(
sup

t0≤t≤0
|ζ(N,θ)

`+1 (N−1/2t)− ζ
(N,θ)
`+1 (N−1/2t0)| > K

)

≤
(

const
K2

)
c + o(1), (5.3.1)

where const does not depend on t0 and N , and o(1) converges to 0 as N →∞.

Proof. Recall that Ψ(N)(t) is characterized as the unique solution of the mar-
tingale problem with generator (5.1.1). Applying the generator to the function
F (ν) =

∫ 〈µ, 1
N`+1 1

B
(N)
`+1
〉ν(dµ), it follows that {M`+1(t)}t0≤t≤0, defined by

M`+1(t) = ζ
(N,θ)
`+1 (t)− ζ

(N,θ)
`+1 (t0)

−
∫ t

t0

∞∑

k=1

c`+k

Nk−1

(
ζ
(N,θ)
`+1+k(N−k/2s)− ζ

(N,θ)
`+1 (s)

)
ds

is a martingale.
Then

P

(
sup

t0≤t≤0
|ζ(N,θ)

`+1 (N−1/2t)− ζ
(N,θ)
`+1 (N−1/2t0)| > K

)

≤ P

(∫ 0

t0
N1/2

∣∣
∞∑

k=1

c`+k

Nk−1

(
ζ
(N,θ)
`+1+k(N−k/2s)− ζ

(N,θ)
`+1 (s)

) ∣∣ds >
K

2
)

)

+P


 sup

t0
N1/2≤t≤0

|M`+1(t)| > K

2


 (5.3.2)
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Recall from Corollary 5.1.4 that E
(
ζ
(N,θ)
` (t)

)2

is bounded uniformly in N

and t. Let

gN (s) := |
∞∑

k=1

c`+k

Nk−1

(
ζ
(N,θ)
`+1+k(N−k/2s)− ζ

(N,θ)
`+1 (s)

)
|

and note that by Corollary 5.1.6 E(g2
N (s)) is uniformly bounded in s and N .

Then

P

(∫ 0

t0
N1/2

gN (s)ds >
K

2

)

≤ const
K2

(
t0

N1/2
)2E

[
1
t0

N1/2

∫ 0

t0
N1/2

gN (s)ds

]2

≤ const
K2

(
t0

N1/2
)2

[
1
t0

N1/2

∫ 0

t0
N1/2

E(gN (s)2)ds

]

≤ const
K2

(
t0

N1/2

)2

Next we note that by Lemma 3.2.4(b) and Remark 3.2.5 (with ε = 1
N ) we

get for t0 ≤ t ≤ 0

E
(
[ζ(N,θ)

`+1 (t)− ζ
(N,θ)
`+1 (t0)]2

∣∣∣ζ(N,θ)
`+1 (t0) = m,

∞∑

k=1

c`+k

Nk−1
ζ
(N,θ)
`+1+k(·) = a(·)

)

= (m2e−2c`+1(t−t0) −m2)

+
m

c2
`+1

{c`+1(t− t0)e−c`+1(t−t0) + e−2c`+1(t−t0) + 2(t− t0)c3
`+1ae−c`+1(t−t0)

−e−c`+1(t−t0) + (t− t0)c2
`+1εe

−c`+1(t−t0)}

+
1

c2
`+1

∫ t

t0

k1(s, t)a(s)ds +
∫ t

t0

∫ s2

t0

k2(t, s2, s1)a(s1)a(s2)ds1ds2

+o(1) ·
∫ t

t0

k3(t, s)s(s)ds

where ki(t, ·) i = 1, 3 and k2(t, ·, ·) are bounded non-negative kernels that satisfy
(3.2.11) and o(1) converges to 0 as N →∞. Using Corollary 5.1.4 we conclude
that

E
(
[ζ(N,θ)

`+1 (N−1/2t)− ζ
(N,θ)
` (N−1/2t0)]2

)
≤ const · (t− t0)

N1/2
+ o1(

1
N

). (5.3.3)

We now apply the L2-martingale inequality,

P


 sup

t0
N1/2≤t≤0

|M`+1(t)| > K

2

∣∣∣M`+1(t0/N1/2) = 0
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≤ 1
K2
E

(
|M`+1(0)|2

∣∣∣M`+1(t0/N1/2) = 0
)

≤ const
K2

|t0|
N1/2

+ o1(
1
N

).

Let M1[[0,∞) × (0,∞)]\{0} denote the set of non-zero Radon measures
on [0,∞) × (0,∞) such that

∫∞
0+

∫∞
0

yµ(dx, dy) +
∫∞
0+

yµ({0}, dy) < ∞ and∫∞
0+

∫∞
0

xµ(dx, dy) < ∞.

Proposition 5.3.2 Let ` be fixed and

Y(N)(t; dx, dy) =
1

N (`+1)/2

∫
1
{ ν(B

(N)
`

)

N`/2 ∈dx,
ν(B

(N)
`+1)

N(`+1)/2 ∈dy}
Ψ(N,θ)(N `/2t, dν)

Assume that
Y(N)(t0; dx, dy) N→∞=⇒ µ0(dy)δ0(dx).

Then {N1/2Y(N)(t; dx, dy)1x>0}t0<t≤0 converges weakly as N → ∞ to the
M1(0,∞)-valued diffusion {η(t)}t0<t≤0 with generator G` defined as follows.
Let F (µ`) = f(〈µ`, ϕ〉) with ϕ ∈ C2((0,∞)) with |ϕ(x)| ≤ const|x ∧ 1|. Then

G`F (µ`) = f ′(〈µ`, ϕ〉)〈µ`, G
(2)
c` ϕ`〉+ 1

2f ′′(〈µ`, ϕ`〉)〈µ`, ϕ
2
`〉 (5.3.4)

+f ′(〈µ`, ϕ`〉)c`

∫
∂ϕ`

∂x (x, y)|x=0yµ0(dy).

where G
(2)
c` denotes the application of the operator Gc`

to the x variable. That
is, η(t) is a two-level branching process with constant multitype immigration
source with immigration from zero of type y at rate given by yµ0(dy) and total
immigration rate of

∫∞
0

yµ0(dy) .

Proof. The proof is a refinement of the proof of Proposition 3.2.1. We
begin by noting that Lemma 5.2.3 implies that asymptotically as N → ∞ the
contribution of immigrants into B

(N)
`+1 from B

(N)
`+k, k ≥ 2 is negligible. Moreover

the contribution of immigrants into B
(N)
`+1 from B

(N)
`+2 in the time scale N `/2 is

also asymptotically negligible. Therefore in the time scale N `/2 we can restrict
attention to the population in B

(N)
`+1 . More precisely, asymptotically as N →∞

the population ζ
(N,θ)
` (t) =

∫ ∫
xN1/2Y(N)(t, dx, dy)1x>0 consists of descendants

of immigrants entering from B
(N)
`+1 in the time interval [N `/2t0(N), 0] provided

that we take t0(N) → −∞.
As in the proof of Proposition 3.2.1 a standard argument yields the tightness

of the processes {ζ(N,θ)
` (t)}t0≤t≤0 and {ζ(N,θ)

`+1 (N−1/2t)}t0≤t≤0. The tightness
in C([t0, 0],M1((0,∞))) of N1/2Y(N)(·)1x>0 is also obtained as in the proof
of Proposition 3.2.1. One difference is the presence of additional terms in the
expressions for the moments. However these expressions tend to zero as N →∞.
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A first moment calculation shows that the expected contribution of individu-
als who leave B

(N)
` and then re-immigrate is O( 1

N ) and therefore asymptotically
negligible. This means that we can treat the population in B

(N)
` in the time

interval [t0, 0] as a two level branching system critical at the family level and
subcritical at the individual level with subcriticality parameter c` and with im-
migration of individuals from B

(N)
`+1 . Moreover by Lemma 5.3.1 the source of

immigrant individuals ζ
(N,θ)
`+1 (t) is asymptotically constant in the time interval

(t0(N), 0) provided that
|t0(N)|

N
1
2

→ 0

as N →∞.
The main difference from the proof of Proposition 3.2.1 is that we cannot

assume that each immigrant belongs to a different family. Since the individuals
immigrating into B

(N)
` come from families in B

(N)
`+1 subject to family branching,

it is necessary to keep track of the family structure in the ball B
(N)
`+1 . The reason

for this is that in principle an individual immigrating into B
(N)
` could be a

member of a B
(N)
`+1-family already represented in B

(N)
` and then could not be

viewed as the founder of an independent family in B
(N)
` . Part of the argument

below is to verify that that this effect is negligible.
By the family size constraint at time t0 (see Lemma 5.2.1(b)), the population

in B
(N)
`+1 consists of a collection of families whose sizes are O(N (`+1)/2). We index

these families at time t0 by i ∈ N with masses yiN
(`+1)/2.

Recall from section 2.3.2 that Ψ(N,θ)(t) =
∑

j ψj(t, ·) where ψj(t, ·) is a
counting measure on ΩN corresponding to the spatial distribution of the family
indexed by j at time t. We now give a precise formulation to the time develop-
ment of the families simultaneously in B

(N)
`+1 and B

(N)
` . To each family ψj and

t ∈ R we associate a couple (xj(t), yj(t)) where

xj(t) =
ψj(t, B

(N)
` )

N `/2
, yj(t) =

ψj(t, B
(N)
`+1)

N (`+1)/2
.

Then
Y(N)(t; dx, dy) = ε2

∑

i

δ(xi(N`/2t),yi(N`/2t))(dx, dy),

where ε2 = N−(`+1)/2. Also, let ε0 = 1
N , ε1 = 1

N`/2 .

By assumption, the family size distribution in B
(N)
`+1 at time t0, asymptoti-

cally as N →∞, is given by µ0 with
∫

yµ0(dy) < ∞.
It suffices to show that for t ≥ t0, as N →∞

Y(N)(t; dx, dy)1{x<N− 1
4 } ⇒ µ0

`+1(dy)δ0(dx) (5.3.5)

Y(N)(t; dx, dy)1{x>0} ⇒ 0 (5.3.6)

{Ỹ(N)(t)}t≥t0 ⇒ {η(t)}t≥t0 (5.3.7)

49



where Ỹ(N)(t) is the renormalized family measure given by

Ỹ(N)(t; dx, dy) = N1/2Y(N)(t; dx, dy)1{x>0} + Y(N)(t; dx, dy)1{x<N− 1
4 }

and where η(t) is a M1[[0,∞)× (0,∞)]-valued diffusion with generator G`.
To verify (5.3.5), first using Lemma 5.2.3 and Proposition 3.2.1 we can verify

that

sup
t∈(−t0,0]

∫ ∫
(1 ∧ y)|Y(N)(t; dx, dy)− Y(N)(t0; dx, dy)| → 0 in probability.

Moreover
∫ ∫ ∞

N−1/4
N1/2Y(N)(t; dx, dy) < N1/4

∫ ∫ ∞

0

xN1/2Y(N)(t; dx, dy).

Therefore by the tightness of
∫ ∫∞

0
x(N1/2Y(N)(·; dx, dy)1{x>0}) and {ζ(N,θ)

`+1 },
as N →∞,

∫ ∫ ∞

N−1/4
Y(N)(1 ∧ y)(t; dx, dy) → 0 in probability

and (5.3.5) and (5.3.6) follow.
We now turn to the proof of (5.3.7). In order to implement the rescaling we

introduce the class of functions of the form

F (µ) = f(〈µ, ϕ)) = f(
∫ ∫

ϕ(x, y)µ(dx, dy)) = f(ε2

∑

i

ϕ(xi, yi)),

where
ϕ(x, y) = ε

−1/2
0 1{x>0}ϕ`(x, y) + ϕ`+1(y)1{x<N− 1

8 }.

We assume that |ϕ`|, |∂ϕ`(x,y)
∂x |, |ϕ`+1| are bounded, C2, and |ϕ`(x, y)| ≤ const ·x

for x ≥ 0 and |ϕ`+1(y)| ≤ const · y for y > 0.
Now define

µ`(dx, dy) = N1/2µ(dx, dy)1{x>0}

and note that
∫

ϕ(x, y)µ(dx, dy) =
∫

ϕ`(x, y)µ`(dx, dy) +
∫

ϕ`+1(x, y)1{x<N− 1
8 }µ(dx, dy).

The generator of Y(N) acting on F is given by
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G
(N)F (µ)

= c`ε0

N
2`−1

4X
j1=0

X
j2>j1

[f(〈µ, ϕ〉+ ε1(ϕ`((j1 + 1)ε1, j2ε2)− ϕ`(j1ε1, j2ε2))− f(〈µ, ϕ〉)]

· (j2 − j1)ε2µ(j1ε1, j2ε2)

ε2
2

+ c`ε0

X

j1>N
2`−1

4

X
j2>j1

[f(〈µ, ϕ〉+ ε1(ϕ`((j1 + 1)ε1, j2ε2)− ϕ`(j1ε1, j2ε2))− f(〈µ, ϕ〉)]

· (j2 − j1)ε2µ(j1ε1, j2ε2)

ε2
2

+
1

2

∞X
j1=0

∞X

j2≥j1

[f(〈µ, ϕ〉+ ε2ϕ`(j1ε1, j2ε2)))− f(〈µ, ϕ〉)]µ(j1ε1, j2ε2)

ε1ε2

+
1

2

∞X
j1=0

∞X

j2≥j1

[f(〈µ, ϕ〉 − ε2ϕ`(j1ε1, j2ε2)))− f(〈µ, ϕ〉)]µ(j1ε1, j2ε2)

ε1ε2

+
1

2
(1− ε1c`)

∞X
j1=1

∞X

j2≥j1

·[f(〈µ, ϕ〉 − ε1ϕ`(j1ε1, j2ε2) + ε1ϕ`((j1 + 1)ε1, (j2 + 1)ε2))− f(〈µ, ϕ〉)] j1µ(j1ε1, j2ε2)

ε1ε2

+
1

2
(1 + ε1c`)

∞X
j1=1

∞X

j2≥j1

·[f(〈µ, ϕ〉 − ε1ϕ`(j1ε1, j2ε2) + ε1ϕ`((j1 − 1)ε1, (j2 − 1)ε2)))− f(〈µ, ϕ〉)] j1µ(j1ε1, j2ε2)

ε1ε2

+
1

2

N
2`−1

4X
j1=0

∞X

j2≥j1

·[f(〈µ, ϕ〉 − ε2ϕ`+1(j2ε1) + ε2ϕ`+1((j2 + 1)ε2))))− f(〈µ, ϕ〉)] j2µ(j1ε1, j2ε2)

ε1ε2

+
1

2

N
2`−1

4X
j1=0

∞X

j2≥j1

·[f(〈µ, ϕ〉 − ε2ϕ`+1(j2ε2) + ε2ϕ`+1((j2 − 1)ε2)))− f(〈µ, ϕ〉)] j2µ(j1ε1, j2ε2)

ε1ε2

+
1

2

∞X

j1>N
2`−1

4

∞X

j2≥j1

·[f(〈µ, ϕ〉 − ε1ϕ`(j1ε1, j2ε2) + ε1ϕ`(j1ε1, (j2 + 1)ε2))− f(〈µ, ϕ〉)] j2µ(j1ε1, j2ε2)

ε1ε2

+
1

2

∞X

j1>N
2`−1

4

∞X

j2≥j1
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·[f(〈µ, ϕ`〉 − ε1ϕ`(j1ε1, j2ε2) + ε1ϕ`(j1ε1, (j2 − 1)ε2)))− f(〈µ, ϕ〉)] j2µ(j1ε1, j2ε2)

ε1ε2
.

We give a brief explanation of these terms.
1. This term corresponds to the migration into B

(N)
` of individuals from

families currently minimally occupying B
(N)
` . Asymptotically as N → ∞, this

is
c`f

′(〈µ, ϕ〉)
∫

[0,ε
1/4
0 )

∫ ( ∂

∂x
ϕ`(x, y)

)
y µ`+1(dx, dy),

whose limit (by (5.3.5)) is

c`f
′(〈µ, ϕ`〉)

∫ ( ∂

∂x
ϕ`(x, y)|x=0

)
y µ0(dy).

2. The second term is similar to the first except that here only families
having more than minimal mass in B

(N)
` appear. In the limit N →∞ we have

asymptotically

c`f
′(〈µ, ϕ〉)

∫

x>ε
1/4
0

∫
∂

∂x
ϕ`(x, y)

y

N1/2
µ`,N (dx, dy) (5.3.8)

≤ c`|f ′(〈µ, ϕ〉)| sup | ∂

∂x
ϕ`(x, y)|

(∫ ∫

y>N
1
8

yµ(dx, dy) +
N1/8

N1/2

∫ ∞

N−1/4

∫ N1/8

0

µ`,N (dx, dy)
)

≤ c`|f ′(〈µ, ϕ〉)| sup | ∂

∂x
ϕ`(x, y)|

(∫ ∫

y>N
1
8

yµ(dx, dy) + N−1/8

∫ ∞

0

∫ ∞

0

xµ`,N (dx, dy)
)

= o(1) + O(
1

N1/8
) (5.3.9)

since
∫ ∫

x>0

∫
xµ`,N (dx, dy) = O(1).

3. and 4. These two terms arise from the family level branching. If
|ϕ`(x, y)| ≤ const · x, then asymptotically they yield

1
2N1/2

f ′′(〈µ, ϕ〉)
∫ ∫

ϕ2(x, y)µ(dx, dy)

=
1

2N1/2
f ′′(〈µ, ϕ〉)

∫ ∫
ϕ2

`+1(y)µ(dx, dy)

+f ′′(〈µ, ϕ〉)
∫ N−1/4

0

∫
ϕ`+1(y)ϕ`(x, y)µ(dx, dy)

+f ′′(〈µ, ϕ〉)
∫

ϕ2
`(x, y)µ`(dx, dy)

5. and 6. This corresponds to the critical birth and death of individuals in
B

(N)
` . The limiting term is

f ′(〈µ, ϕ`〉)〈µ, G(2)
c`

ϕ`〉,
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where G
(2)
c` denotes the application of the operator Gc`

to the x variable.
7. and 8. These terms correspond to the birth and death of individuals in

B
(N)
`+1 in families that do not or sparsely occupy B

(N)
` . Asymptotically we obtain

1
N1/2

f ′(〈µ, ϕ〉)〈µ, y
∂2

∂y2
ϕ`+1(y)〉

9. and 10. These terms correspond to the birth and death of individuals
in B

(N)
`+1 in families which have at least a minimal number of members in B

(N)
` .

Asymptotically we obtain

f ′(〈µ, ϕ〉)
∫

x>ε
1/4
0

1
N1/2

µ`(dx, dy)y
∂2

∂y2
ϕ`(x, y) = O(

1
N1/4

)

Collecting the limiting terms as N → ∞, we obtain G(N)F (µ) → G`F (µ)
where

G`F (µ) = f ′(〈µ, ϕ〉)〈µ`, G
(2)
c` ϕ`〉+ 1

2f ′′(〈µ, ϕ`〉)〈µ`, ϕ
2
`〉 (5.3.10)

+f ′(〈µ, ϕ`〉)c`

∫
∂ϕ`

∂x (x, y)|x=0yµ0(dy).

We conclude that for any limit point of the probability laws of Y(N)1x>0,

F̃ (η(t))−
∫ t

t0

G`F̃ (η(s))ds

is a martingale where F̃ ∈ C(M1((0,∞))) is defined by F̃ (µ) = f(〈µ, ϕ`〉 +
〈µ0, ϕ`+1〉) and f, ϕ` and ϕ`+1 satisfy the same conditions as above. But this
coincides with the martingale problem of the two level branching diffusion with
constant multitype immigration source with immigration rate of type y given
by yµ0(dy) and total immigration rate of

∫∞
0

yµ0(dy) (recall Proposition 3.2.1)
which is well posed and determines a M1(0,∞)-valued diffusion process. This
completes the proof of the proposition.

5.4 The limiting multiscale transition function

The main result of the section is the identification of the limiting multiscale
structure, which serves to complete the proof of Theorem 2.4.1.

Theorem 5.4.1 Fix j ≥ 1 and ζ∗j+1 > 0. Conditioned on ζ
(N,θ)
j+1 (0) = ζ

∗(N)
j+1 ,

and provided that ζ
∗(N)
j+1 → ζ∗j+1 as N → ∞, then the normalized equilibrium

masses {ζ(N,θ)
` (0)}`=j+1,j,...,1 in a sequence of nested blocks {B(N)

` }`=1,...,j+1

converge as N →∞ in distribution to the backward Markov chain {ζ`}`=j+1,j,...,1

with transition kernel

P (ζ` ∈ A|ζ`+1 = a) = Π(2)
` (a, A)

where Π(2)
` is as in Proposition 2.1.1 b), and ζj+1 = ζ∗j+1.
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Proof. The principal step in proving this is given by Proposition 5.3.2. Then to
verify that the limiting equilibrium distribution as N →∞ of ζ

(N,θ)
` conditioned

on ζ
(N,θ)
`+1 = a is given by Π(2)

` (a, dx) we then follow the argument in Corollary
3.2.2(b). The convergence of {ζ`(0)}`=j+1,j,...,0 to the Markov chain then follows
by recursion and the continuity of the mappings a → Π(2)

` (a, dx).

Combining Theorem 5.4.1 with the spatial ergodic theorem (Theorem 5.1.7)
and Proposition 2.1.1 b), we see that the interchange of the limits N →∞ and
j →∞ is justified and completes the proof of Theorem 2.4.1.

5.5 The particle level picture

In the previous section the main result is obtained using the convergence of the
solutions of the appropriate sequence of martingale problems. Some additional
understanding of the limiting process can be obtained by examining the particle
picture in both B

(N)
`+1 and B

(N)
` which we now briefly sketch in an informal

way. First note that the change in the population in B
(N)
`+1 due to movement of

particles between B
(N)
`+1 and its exterior in time scale N `/2 has expected value

o( 1
N ) and therefore is negligible.
For the moment we fix t0 < 0 and consider the contributions to ζ

(N,θ)
` (0)

coming from immigrants arriving in the interval [t0N `/2, 0). Next we recall that
by (5.2.1) all but O( 1

K ) of the population in B
(N)
`+1 at time 0 is contained in

families with sizes in (0,KN (`+1)/2). Therefore we can subdivide the popula-
tion at time 0 into O(N (`+1)/2) independent subpopulations of size O(N (`+1)/2)
where if necessary we group together smaller families to form subpopulations
of size O(N (`+1)/2). (This ensures independent level two branching in B

(N)
` for

clusters coming from distinct families in this subdivision.) Since the families
undergo critical branching these are the descendants of O(N1/2) ancestral fam-
ilies at time t0N

`/2 and in the time interval (t0N `/2, 0) these undergo binary
branching with nN (s) branches at time sN `/2. Now consider a single family in
B

(N)
`+1 containing O(N (`+1)/2) individuals. By the analogue of Lemma 5.3.1 the

normalized population size of this family is constant in the time scale N `/2.
We subdivide the interval [N `/2t0, 0) into M(∈ N) subintervals of equal

length 1
M t0N

`/2. Let tk := M−k
M t0 and consider an interval (tk+1N

`/2, tkN `/2).
Recall that the rate of migration of individuals into B

(N)
` from B

(N)
`+1 is c`N

−`/2.
Therefore in the time interval the number of individuals to immigrate into the
ball B

(N)
` from a family of size mN (`+1)/2 in B

(N)
`+1 is Poisson with mean

mN (`+1)/2 × c`

N `/2
((tk − tk+1)N `/2)× 1

N

= c`m(tk − tk+1)N (`−1)/2. (5.5.1)

Now consider the question of which of these have descendants alive in B
(N)
` at

time zero. Let U := min{s : nN (s) = 2}. In order to determine this recall that
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from the structure of the genealogy of the critical branching cluster (see e.g.
[Du],[F]) the random variable U is uniform distributed on [0, 1]. Moreover the
probability that an initial individual produces a non-empty set of descendants
in a time interval of length U |tk|N `/2 is asymptotically as N →∞

2c`e
−c`Utk

N `/2(1− e−c`Utk)
.

(see e.g. [AN](Chapt. 3)). Therefore the probability that that any of the
O(N (`−1)/2) immigrants arriving from a family of size N (`+1)/2 in [tk+1N

`/2, tkN `/2)
have descendants alive at time 0 is no larger than

2c`e
−c`u0(N)tk

N1/2(1− e−c`u0(N)tk)
+ P (U < u0(N))

for any 0 < u0(N) < 1. Again by ([Du],[F]) the number of (family) branches
nN (tk) at time tkN `/2 converges in distribution as N → ∞ for each of the
O(N1/2) ancestral families and the family trees from the different ancestral
families are independent. Choosing u0(N) → 0 such that N1/2u0(N) → ∞
we conclude that there is a Poisson [with mean of order O((tk − tk+1)e−c`tk)]
number of individuals who immigrate in (N `/2t0, N

`/2tk] producing descendants
at time 0, and these all come from different branching trees.

Therefore the population at time zero coming from immigrants arriving in
(N `/2t0, N

`/2tk) is asymptotically composed of O(1) two level families each
originating from one individual and these all come from different independent
subpopulations in B

(N)
`+1 . In particular the expected mass coming from clusters

containing two or more immigrants from the same subpopulation in B
(N)
`+1 is

O( 1
N1/2 ). Each two level cluster coming from an immigrating individual develops

by two level branching, namely, family level branching inherited from the family
branching in B

(N)
`+1 and subcritical individual level branching in B

(N)
` . Finally,

in both cases the total migration rate of individuals into B
(N)
` from B

(N)
`+1 is

(ζ(N,θ)
`+1 (N `/2t0)N `+1)× (c`N

−`/2)×N−1 = c`N
`/2ζ

(N,θ)
`+1 (N `/2t0)

where on the left hand side the first factor is the number of particles in B
(N)
`+1 ,

the second is the individual migration rate to a point chosen randomly in B
(N)
`+1

and the last factor is the probability that the tagged ball is chosen. There-
fore, asymptotically as N →∞, the population at time zero consists of clusters
of descendants of individuals that immigrate into B

(N)
` during the time inter-

val (−∞, 0] at rate c`N
`/2ζ

(N,θ)
`+1 (N `/2t0) and subsequently undergo two level

branching. In the limit N → ∞ these clusters correspond to the jumps of the
subordinator S`(·) defined in section 4.2.

Remark 5.5.1 One can also gain some understanding of the convergence to
equilibrium from a spatially homogeneous initial population (more general than
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that addressed in Proposition 2.3.5) with intensity θ > 0. Two ingredients
are involved in the convergence to an equilibrium with intensity θ. The first
is the strong transience condition on the random walk. The other feature is
the structure of the local family sizes. We see from the above that the property
that the contribution of families in B

(N)
`+1 containing a number of individuals

larger than O(N (`+1)/2) to the equilibrium population in B
(N)
` is asymptotically

negligible and this property is then inherited by B
(N)
` . However if the initial

family sizes are too large this iteration can degenerate due to the family level
critical branching and the limiting population is locally degenerate. For a more
detailed analysis of this phenomenon, see [GH].

6 Appendix

6.1 Size-biasing and Palm distributions

Definition 6.1.1 If π is a measure on some measurable space M , and s is a
nonnegative measurable function on M with 0 < s̄ :=

∫
s(z)π(dz) < ∞, then we

call the probability measure π̂ given by

π̂(dz) :=
s(z)
s̄

π(dz)

the size-biasing of π with respect to s. (Here, we think of s(z) as measuring the
size of the object z.)

Remark 6.1.2 a) An example of size-biasing which is important in our context
arises as follows. Let π = L(η) be the distribution of a random measure η (on
some Polish space E, say). Denote the intensity measure of η by λ, and fix a
nonnegative measurable function f on E with 0 < 〈λ, f〉 < ∞. Define the size
of a measure m on E by s(m) :=

∫
f(x)m(dx) = 〈m, f〉, and denote by πf the

size-biasing of π(dm) with 〈m, f〉.
b) Assuming that λ is locally finite, choosing f = 1B where B is a ball in E,

and letting B shrink gives the family of Palm distributions πx, x ∈ S. Formally,
these arise as the disintegration of the measure π(dm)m(dx) with respect to its
second marginal Eη, that is

EG(η)〈η, h〉 =
∫

h(x)G(m)πx(dm)λ(dx). (6.1.1)

See [K], chapter 10, for more background; there, a random measure whose dis-
tribution is the size-biasing of (L(η))(dm) with 〈m, f〉 is denoted by ηf .

c) The following fact ([K], formula (10.6)) is immediate from (6.1.1):
The size-biasing πf of π(dm) with 〈m, f〉 is

1
〈λ, f〉

∫
f(x)πx(.)λ(dx) = EπX̂ , (6.1.2)
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where X̂ is a random element in E whose distribution is the size-biasing of λ
with f .

d) If in the just described situation E consists of one element only, then the
finite random measures on E are R+-valued random variables. When speaking
of the size-biasing of a measure π on R+ without specifying the size function,
we always mean the size-biasing of π(dx) with x.

Let us write Πλ for the distribution of a Poisson random counting measure on
E with intensity measure λ. It is well known (see e.g. [K], beginning of chapter
11) that the Palm distributions of Πλ arise as the distributions of Φ+δx, x ∈ E,
where L(Φ) = Πλ.

Now let σ be a probability measure on R+ with mσ :=
∫

τσ(dτ) ∈ (0,∞),
and write

Πσ,λ :=
∫

Πτλσ(dτ)

for the mixed Poisson distribution with mixing measure σ.
The following lemma, whose proof we include for convenience, is part of a

characterization theorem ([K], Theorem 11.5) of mixed Poisson processes.

Lemma 6.1.3 The Palm distributions of Πσ,λ arise as the distributions of Φ+
δx, x ∈ E, where L(Φ) = Πσ̂,λ, and σ̂ is the size-biasing of σ.

Proof. Using the above mentioned form of the Palm distributions of Πτλ, we
obtain for all nonnegative measurable h and G defined on E and Mc(E), the
space of locally finite counting measures on E, respectively:
∫

G(ψ)〈ψ, h〉Πσ,λ(dψ) =
∫ ∫

G(ψ)〈ψ, h〉Πτλ(dψ)σ(dτ) (6.1.3)

=
∫ ∫

τλ(dx)h(x)G(ψ + δx)Πτλ(dψ)σ(dτ)

=
∫

mσλ(dx)h(x)
∫

G(ψ + δx)Πτλ(dψ)
1

mσ
τσ(dτ)

Corollary 6.1.4 Assume 0 < 〈λ, h〉 < ∞. Then the size-biasing of Πσ,λ(dψ)
with 〈ψ, h〉 arises as the distribution of Φ+δX̂ , where L(Φ) =

∫
Πτλσ̂(dτ), L(X̂)

is the size-biasing of λ with h, and Φ and X̂ are independent.

Proof. This can be seen either by combining Remark 6.1.2 c) and Lemma 6.1.3,
or by dividing (6.1.3) through Eσ,λ〈Ψ, h〉 = mσ〈λ, h〉.

6.2 Subcritical Feller branching

Let us fix c > 0. In the following, X will denote a c-subcritical Feller branch-
ing diffusion (c-FBD) process. In other words, X is an [0,∞)-valued diffusion
process satisfying

dXt =
√

Xt dWt − cXtdt (6.2.1)
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where Wt is Brownian motion. For ε > 0, let Xε be the c-FBD process starting
in ε at time 0.

From well-known results on Galton-Watson processes conditioned to sur-
vival [AN, Ge] and cluster sizes in continuous-state branching processes [D], one
expects that the conditional law L(Xε

t |Xε
t > 0) converges to an exponential

distribution as ε → 0. The following calculation verifies this and identifies the
parameter.

The Laplace functional of Xε
t is given by

E(e−λXε
t ) = e−εv(t,λ), λ ≥ 0, (6.2.2)

where v = v(t, λ) is the solution of

∂v(t, λ)
∂t

= −cv(t, λ)− 1
2
v2(t, λ), v(0, λ) = λ. (6.2.3)

The solution of (6.2.3) is given by

v(t, λ) =
2λce−ct

λ(1− e−ct) + 2c
. (6.2.4)

Combining (6.2.2) and (6.2.4) one obtains by a straightforward calculation

P(Xε
t 6= 0) = 1− exp

(−2εce−ct

1− e−ct

)
, (6.2.5)

EXε
t = εe−ct, ε > 0 (6.2.6)

and
lim
ε→0

E(e−λXε
t |Xε

t 6= 0) =
2c

λ(1− e−ct) + 2c
. (6.2.7)

Writing Exp(u) for the exponential distribution with parameter u, we obtain
immediately:

Lemma 6.2.1 Fix t > 0.
a)

L(Xε
t |Xε

t > 0) ⇒ Exp
(

2c

1− e−ct

)
as ε → 0. (6.2.8)

b)

ε−1P[Xε
t > 0] → 2ce−ct

1− e−ct
as ε → 0. (6.2.9)

For ε > 0, let

X̄ε =
Nε∑

i=1

Xε,i, (6.2.10)

where Nε is a Poisson(ε−1)-random variable and Xε,1, Xε,2, . . . are independent
copies of Xε. The following lemma is an easy consequence of Lemma 6.2.1.
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Lemma 6.2.2 Fix t > 0. Then

X̄ε
t ⇒ X̄0

t as ε → 0, (6.2.11)

where X̄0
t is infinitely divisible with canonical measure

κt :=
2ce−ct

1− e−ct
Exp

(
2c

1− e−ct

)
. (6.2.12)

Let us now define the measure

γc := c

∫ ∞

0

κs ds. (6.2.13)

An elementary calculation based on (6.2.12) and (6.2.13) shows that

γc(dx) = 2c
1
x

e−2cxdx, x > 0. (6.2.14)

This identifies γc as the canonical measure of the Gamma(2c, 2c)-distribution,
and goes along with the well-known fact that the equilibrium distribution of
(4.1.1) is the Gamma(2ca, 2c)-distribution. We note that γc is the Lévy measure
of the Gamma subordinator S(τ), τ ≥ 0, with scale parameter 2c and ES(1) = 1.
The following is obvious from (6.2.14):

Remark 6.2.3 a)
∫∞
0

xγc(dx) = 1.

b)
∫∞
0

x2γc(dx) = 1/2c.

Finally we consider the semigroup (Tt) be the semigroup of the c-FBD pro-
cess. Recalling (6.2.8), (6.2.9) and (6.2.12), the (Tt)-entrance law (κt) from 0 is
given by

κt = lim
ε→0

1
ε
δεTt = lim

ε→0

1
ε
L(Xε

t ; Xε
t 6= 0), t > 0, (6.2.15)

where (Xε
t ) is the c-FBD-process starting in ε at time 0. Because of (6.2.12),

κt(dx) has density

κt(x) =
(2c)2e−ct

(1− e−ct)2
exp

(
− 2cx

1− e−ct

)
, x ∈ (0,∞). (6.2.16)

Then for f ∈ C1((0,∞)) and t > 0,

d

dx
Ttf(x)

∣∣∣
x=0

= lim
ε→0

1
ε
Ttf(ε) =

∫
f(y)κt(dy). (6.2.17)
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