46 research outputs found

    Measurement of radon emanation and impurity adsorption from argon gas using ultralow radioactive zeolite

    Full text link
    The amount of radioactive impurities contaminated in the detector gases is required to be kept at a very low level for rare event particle physics such as dark matter and neutrino observation experiments. Zeolite is a well-known adsorbent material and is one of the possible candidates for removing impurities from these gases. At the same time, the amount of radioactive impurities released from the adsorbent material needs to be sufficiently small. In this paper, a development of a new ultralow radioactive zeolite as a product of the selection of ultralow radioactive materials is reported. Results on the radon emanation and impurity adsorption from argon gas measurements are also described.Comment: 8 pages, 7 figure

    Continuous Flow Synthesis of ZSM-5 Zeolite on the Order of Seconds

    Get PDF
    Zeolites have typically been synthesized via hydrothermal treatment, a process designed to artificially mimic the geological formation conditions of natural zeolites. This synthesis route, typically carried out in batch reactors like autoclaves, takes a time so long (typically, on the order of days) that the crystallization of zeolites had long been believed to be very slow in nature. Long periods of hydrothermal treatment also cause a burden on both energy efficiency and operational costs. Recently, we have reported the ultrafast syntheses of a class of industrially important zeolites within several minutes.[1,2] Further shortening the crystallization time to the order of seconds would be a great challenge but can significantly benefit the mass product of zeolites as well as the fundamental understanding of the crystallization mechanism

    A 3D Organically Synthesised Porous Carbon Material for Lithium Ion Batteries

    Get PDF
    We report the first organically synthesized sp–sp3 hybridized porous carbon, OSPC‐1. This new carbon shows electron conductivity, high porosity, the highest uptake of lithium ions of any carbon material to‐date, and the ability to inhibit dangerous lithium dendrite formation. The new carbon exhibits exceptional potential as anode material for lithium‐ion batteries (LIBs) with high capacity, excellent rate capability, long cycle life, and potential for improved safety performance

    Improvement of strength of carbon nanotube-dispersed Si3N4 ceramics by bead milling and adding lower-temperature sintering aids

    Get PDF
    Studies on the dispersion of carbon nanotubes (CNTs) in silicon nitride (Si3N4) ceramics to provide the latter with electrical conductivity have been carried out in recent years. The density and the strength of Si3N4 ceramics were degraded, however, because the CNTs prevented Si3N4 from densifying. The CNTs disappeared after firing at high temperatures owing to the reaction between CNTs and Si3N4 or SiO2, or both Si3N4 and SiO2. In order to improve the density and suppress the reaction, sintering aids for lower-temperature densification of Si3N4 are needed. In this study, we added HfO2 as a sintering aid to a Si3N4–Y2O3–Al2O3–AlN–TiO2 system to fabricate CNT-dispersed Si3N4 ceramics at lower temperatures. Furthermore, bead milling was applied to disperse the CNTs homogeneously. Agglomerates of CNTs were pulverized by bead milling without obvious changes in morphology to eliminate larger fracture origins in CNT-dispersed ceramics. As a result of both the addition of HfO2 and bead milling, we successfully fabricated dense CNT-dispersed Si3N4 ceramics with high strength and electrical conductivity

    Concerted bimetallic nanocluster synthesis and encapsulation via induced zeolite framework demetallation for shape and substrate selective heterogeneous catalysis

    No full text
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOBimetallic nanoparticle encapsulation in microporous zeolite crystals is a promising route for producing catalysts with unprecedented reaction selectivities. Herein, a novel synthetic approach was developed to produce PtZnxnanoclusters encapsulated inside572264546458FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2015/23900‐2309373/2014‐

    Extremely stable zeolites developed via liquid-mediated self-defect-healing

    No full text
    The successful application of zeolites in diverse fields largely relies on their high stability compared with other porous materials. However, the property requirements for zeolites have become stringent due to their diverse and demanding applications. Aluminosilicate zeolites are utilized for adsorptive and catalytic applications, wherein they are sometimes exposed to high-temperature steaming conditions (~1000 °C). Zeolites are exposed to severe steaming conditions in regenerators to remove coke, and over 400,000 t/y of catalysts are discarded due to degradation during the FCC process [1]. Recently, zeolites have been used in exhaust gas treatment processes, such as the selective catalytic reduction of NOx, catalytic oxidation for diesel engines, and hydrocarbon trapping [2], wherein they degrade due to interactions with high-temperature (>800 °C) steam. In automotive applications, degradation is often severe because zeolites are continuously exposed to steam without replacement. Therefore, the development of highly stable zeolites has become an important issue. As the degradation of high-silica zeolites originates from the defect sites in their frameworks, feasible defect-healing methods are highly demanded. Herein, we propose a method for healing defects to create extremely stable high-silica zeolites. High-silica (SiO2/Al2O3 > 240) zeolites with *BEA-, MFI-, and MOR-type topologies could be stabilized by significantly reducing the defect sites via a liquid-mediated treatment without using additional silylating agents. Upon exposure to extremely high-temperature (900–1150 °C) steam, the stabilized zeolites retain their crystallinity and micropore volume, whereas the parent commercial zeolites degrade completely (Figure 1). The proposed self-defect-healing method provides new insights into the migration of species through porous bodies and significantly advances the practical applicability of zeolites in severe environments
    corecore