30 research outputs found

    Missing sea level rise in southeastern Greenland during and since the Little Ice Age

    Get PDF
    The Greenland Ice Sheet has been losing mass at an accelerating rate over the past 2 decades. Understanding ice mass and glacier changes during the preceding several hundred years prior to geodetic measurements is more difficult because evidence of past ice extent in many places was later overridden. Salt marshes provide the only continuous records of relative sea level (RSL) from close to the Greenland Ice Sheet that span the period of time during and since the Little Ice Age (LIA) and can be used to reconstruct ice mass gain and loss over recent centuries. Salt marsh sediments collected at the mouth of Dronning Marie Dal, close to the Greenland Ice Sheet margin in southeastern Greenland, record RSL changes over the past ca. 300 years through changing sediment and diatom stratigraphy. These RSL changes record a combination of processes that are dominated by local and regional changes in Greenland Ice Sheet mass balance during this critical period that spans the maximum of the LIA and 20th-century warming. In the early part of the record (1725–1762 CE) the rate of RSL rise is higher than reconstructed from the closest isolation basin at Timmiarmiut, but between 1762 and 1880 CE the RSL rate is within the error range of the rate of RSL change recorded in the isolation basin. RSL begins to slowly fall around 1880 CE, with a total amount of RSL fall of 0.09±0.1 m in the last 140 years. Modelled RSL, which takes into account contributions from post-LIA Greenland Ice Sheet glacio-isostatic adjustment (GIA), ongoing deglacial GIA, the global non-ice sheet glacial melt fingerprint, contributions from thermosteric effects, the Antarctic mass loss sea level fingerprint and terrestrial water storage, overpredicts the amount of RSL fall since the end of the LIA by at least 0.5 m. The GIA signal caused by post-LIA Greenland Ice Sheet mass loss is by far the largest contributor to this modelled RSL, and error in its calculation has a large impact on RSL predictions at Dronning Marie Dal. We cannot reconcile the modelled RSL and the salt marsh observations, even when moving the termination of the LIA to 1700 CE and reducing the post-LIA Greenland mass loss signal by 30 %, and a “budget residual” of + ~ 3 mm yr−1 since the end of the LIA remains unexplained. This new RSL record backs up other studies that suggest that there are significant regional differences in the timing and magnitude of the response of the Greenland Ice Sheet to the climate shift from the LIA into the 20th century

    The evolution of language: a comparative review

    Get PDF
    For many years the evolution of language has been seen as a disreputable topic, mired in fanciful "just so stories" about language origins. However, in the last decade a new synthesis of modern linguistics, cognitive neuroscience and neo-Darwinian evolutionary theory has begun to make important contributions to our understanding of the biology and evolution of language. I review some of this recent progress, focusing on the value of the comparative method, which uses data from animal species to draw inferences about language evolution. Discussing speech first, I show how data concerning a wide variety of species, from monkeys to birds, can increase our understanding of the anatomical and neural mechanisms underlying human spoken language, and how bird and whale song provide insights into the ultimate evolutionary function of language. I discuss the ‘‘descended larynx’ ’ of humans, a peculiar adaptation for speech that has received much attention in the past, which despite earlier claims is not uniquely human. Then I will turn to the neural mechanisms underlying spoken language, pointing out the difficulties animals apparently experience in perceiving hierarchical structure in sounds, and stressing the importance of vocal imitation in the evolution of a spoken language. Turning to ultimate function, I suggest that communication among kin (especially between parents and offspring) played a crucial but neglected role in driving language evolution. Finally, I briefly discuss phylogeny, discussing hypotheses that offer plausible routes to human language from a non-linguistic chimp-like ancestor. I conclude that comparative data from living animals will be key to developing a richer, more interdisciplinary understanding of our most distinctively human trait: language

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript

    Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease

    Get PDF
    One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain–gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials

    20th Century sea-level change along the eastern US: unravelling the contributions from steric changes, Greenland ice sheet mass balance and Late Pleistocene glacial loading

    No full text
    We have considered the influence of ocean temperature and salinity changes, mass changes of the Greenland ice sheet (GIS) and the isostatic response of the solid earth to the most recent glacial cycle on 20th century sea-level change along the US east coast with the intention of better understanding the observed signal as well as determining the potential of the tide gauge data for constraining the recent (past 50–100 yr) mass balance of the GIS and earth viscosity structure. Our results show that the signal due to steric changes is large and displays a complex spatial variation which can account for a significant portion of the observed signal. In contrast, that due to changes in the GIS is relatively small and insensitive to the specific geometry of the mass balance model adopted. As a consequence, the tide gauge data alone are not capable of providing useful constraints on either the magnitude or form of recent GIS mass balance. Our inference of mantle viscosity structure based on the tide gauge data was affected dramatically when the steric effect was accounted for: An earth model with an upper mantle viscosity of 8 × 1019 Pa s and a lower mantle viscosity of 5 × 1022 Pa s produced the best fit to the steric-corrected data; the optimal fit to the uncorrected data was obtained for upper and lower mantle viscosities of 5 × 1020 Pa s and 1022 Pa s, respectively

    Relative sea level change in west Greenland during the last millennium

    Get PDF
    Relative sea level (RSL) data provide important long-term (century to millennial-scale) constraints on ice load history in Greenland. In this paper we present the results of a litho-, bio- and chronostratigraphic study designed to reconstruct RSL during the last millennium from salt marsh deposits recovered from a field site near to the town of Sisimiut, west Greenland. The stratigraphy at three marshes typically records an upwards transition from freshwater to salt marsh deposits. We use a quantitative (transfer function) and subjective model to reconstruct palaeomarsh elevation and changes in mean tide level (MTL) from 16 sediment profiles from these marshes. These palaeomarsh elevations are placed in a chronological framework established by 18 radiocarbon dated index points. Both models yield similar results and show MTL rose from −0.60 ± 0.20 m at c. 600 cal a BP to reach −0.10 ± 0.20 m at c. 400 cal a BP. After this time, MTL remained close to present (±0.20 m) until the present day although low sedimentation rates limit the resolution of our reconstructions during this interval. The initial rise in RSL can be explained by the dominance of non-Greenland processes, notably the collapse of the Laurentide forebulge, over local (Greenland) solid Earth uplift caused by postglacial ice unloading. This is despite some reloading of the crust that occurred during the neoglacial expansion of the Greenland Ice Sheet in this part of west Greenland. The slow-down in RSL at 400 cal a BP does not record either a change in the rate of Laurentide forebulge collapse or a change in eustatic sea level. We argue instead that this slow-down records the effects of a sustained reduction in local (Greenland) ice mass that persists over most of the past 400 years. The latter interval is widely acknowledged as a period of generally cooler than present conditions associated with the later stages of the Little Ice Age. During this period, field evidence suggests that in many areas the ice sheet had reached its maximum late Holocene extent. It is not obvious at this stage how to reconcile an expanding ice sheet with a reduction in ice load during this interval although we hypothesise it could reflect one or more of; i) a change in ice sheet dynamics; ii) reduced mass accumulation caused by cold and dry conditions, and; iii) a lagged response to earlier periods of climate warming

    Relative sea-level change in Greenland during the last 700 years and ice sheet response to the Little Ice Age

    Get PDF
    This paper presents new evidence regarding relative sea-level (RSL) changes and vertical land motions at three sites in Greenland since 1300 A.D., a time interval that spans the later part of the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). We observe RSL rise at two sites in central west Greenland from c. − 0.80 ± 0.20 m at c. 1300 A.D. to c. − 0.20 m ± 0.25 m at c. 1600 A.D., after which RSL slowed and then stabilised. At a third site in south Greenland, we observe RSL rise from c. − 1.40 ± 0.20 m at c. 1400 A.D. until c. 1750 A.D., after which RSL slowed and was stable during at least the latter part of the 20th century. The c. 1600 A.D. RSL slow-down seen at the two former sites is surprising because it occurs during the LIA when one might expect the ice sheet to be gaining mass and causing RSL to rise. We interpret this RSL slowdown to indicate a period of enhanced regional mass loss from central west Greenland since c. 1600 A.D. and propose two hypotheses for this loss: first, a reduction in precipitation during cold and dry conditions and second, higher air temperatures and increased peripheral surface melt of the ice sheet from this date onwards. The latter hypothesis is compatible with a well-established temperature seesaw between western Greenland and northern Europe and, potentially, a previously identified shift from a positive to generally more negative NAO conditions around 1400 to 1600 A.D. Our study shows how RSL data from Greenland can provide constraints on the timing of ice sheet fluctuations in the last millennium and challenges the notion that during cold periods in northern Europe the ice sheet in west Greenland gained mass

    Century-scale relative sea-level changes in West Greenland — A plausibility study to assess contributions from the cryosphere and the ocean

    Get PDF
    This paper interprets high resolution relative sea-level (RSL) reconstructions obtained from recently deposited salt-marsh sediments in Greenland. The primary aim of this study is to determine the relative contribution to the RSL observations from local to regional ice mass changes as well as density-related (steric) variations in the adjacent ocean. At sites in west Greenland, RSL rise slows from ~ 3 mm/yr to ~ 0 mm/yr at 400 years BP and is stable thereafter. In south Greenland, a similar RSL slowdown is also observed but this occurs approximately 200 yrs later. Substantial contributions from oceanographic changes are ruled out as dominant drivers of the RSL slowdown in western Greenland but could be more important at Nanortalik. Model sensitivity tests indicate that the RSL data are not compatible with a dominant dynamic ice loss via the Jakobshavn Isbrae outlet glacier as the region of ice loss and the resulting sea-level trends are too localised. Regional changes in ice thickness related to surface mass balance changes can explain the observed RSL signals but only if there is dominant mass loss during the period 400 years BP to present. This conclusion is unaffected even when uncertainties in Earth viscosity structure are taken into account. However, it is plausible that some of the RSL fall may be due to reduced ice growth at the onset of the Little Ice Age. A high resolution mass balance history of the Greenland Ice Sheet over the past few millennia and the influence of lateral Earth structure on predictions of RSL change are identified as priority areas of study in order to confidently separate local, ‘transient’ (e.g. elastic and gravitational) RSL changes from the long-term viscous contribution associated primarily with deglacial changes

    Surface mass-balance changes of the Greenland ice sheet since 1866

    Get PDF
    Mass loss from the Greenland ice sheet over the past decade has caused the impression thatthe ice sheet has been behaving anomalously to the warming of the 1990s. We have reconstructed the recent (18662005) surface mass-balance (SMB) history of the Greenland ice sheet on a 5x5 km grid using a runoff-retention model based on the positive degree-day method. The model is forced with new datasets of temperature and precipitation patterns dating back to 1866.We use an innovative method to account for the influence of year-on-year surface elevation changes on SMB estimates and have found this effect to be minor. All SMB estimates are made relative to the 196190 average SMB and we compare annual SMB estimates from the period 19952005 to a similar period in the past (192333) where SMB was comparable, and conclude that the present-day changes are not exceptional within the last 140 years. Peripheral thinning has dominated the SMB response during the past decade, as in 192333, but we also show that thinning was not restricted to the margins during this earlier period
    corecore