171 research outputs found

    Identification and Characterization of NeuB3 from Campylobacter jejuni as a Pseudaminic Acid Synthase

    Get PDF
    Campylobacter jejuni and Campylobacter coli are the main causes of bacterial diarrhea worldwide, and Helicobacter pylori is known to cause duodenal ulcers. In all of these pathogenic organisms, the flagellin proteins are heavily glycosylated with a 2-keto-3-deoxy acid, pseudaminic acid (5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid). The presence of pseudaminic acid is required for the proper development of the flagella and is thereby necessary for motility in, and invasion of, the host. In this study we report the first characterization of NeuB3 from C. jejuni as a pseudaminic acid synthase; the enzyme directly responsible for the biosynthesis of pseudaminic acid. Pseudaminic acid synthase catalyzes the condensation of phosphoenolpyruvate (PEP) with the hexose, 2,4-diacetamido-2,4,6-trideoxy-L-altrose (6-deoxy-AltdiNAc), to form pseudaminic acid and phosphate. The enzymatic activity was monitored using 1H and 31P NMR spectroscopy, and the product was isolated and characterized. Kinetic analysis reveals that pseudaminic acid synthase requires the presence of a divalent metal ion for catalysis and that optimal catalysis occurs at pH 7.0. A coupled enzymatic assay gave the values for k(cat) of 0.65 +/- 0.01 s(-1), K(m)PEP of 6.5 +/- 0.4 microM, and K(m)6-deoxy-AltdiNAc of 9.5 +/- 0.7 microM. A mechanistic study on pseudaminic acid synthase, using [2-18O]PEP, shows that catalysis proceeds through a C-O bond cleavage mechanism similar to other PEP condensing synthases such as sialic acid synthase

    FlaA1, a New Bifunctional UDP-GlcNAc C6Dehydratase/ C4 Reductase from Helicobacter pylori

    Get PDF
    FlaA1 is a small soluble protein of unknown function in Helicobacter pylori. It has homologues that are essential for the virulence of numerous medically relevant bacteria. FlaA1 was overexpressed as a histidine-tagged protein and purified to homogeneity by nickel chelation and cation exchange chromatography. Spectrophotometric assays, capillary electrophoresis, and mass spectrometry analyses showed that FlaA1 is a novel bifunctional C(6) dehydratase/C(4) reductase specific for UDP-GlcNAc. It converts UDP-GlcNAc into a UDP-4-keto-6-methyl-GlcNAc intermediate, which is stereospecifically reduced into UDP-QuiNAc. Substrate conversions as high as 80% were obtained at equilibrium. The K(m) and V(max) for UDP-GlcNAc were 159 microm and 65 pmol/min, respectively. No exogenous cofactor was required to obtain full activity of FlaA1. Additional NADH was only used with poor efficiency for the reduction step. The biochemical characterization of FlaA1 is important for the elucidation of biosynthetic pathways that lead to the formation of 2,6-deoxysugars in medically relevant bacteria. It establishes unambiguously the first step of the pathway and provides the means of preparing the substrate UDP-QuiNAc, which is necessary for the study of downstream enzymes

    Cloning of the Lipooligosaccharide α-2,3-Sialyltransferase from the Bacterial Pathogens Neisseria meningitidis and Neisseria gonorrhoeae

    Get PDF
    The genes encoding the alpha-2,3-sialyltransferases involved in lipooligosaccharide biosynthesis from Neisseria meningitidis and Neisseria gonorrhoeae have been cloned and expressed in Escherichia coli. A high sensitivity enzyme assay using a synthetic fluorescent glycosyltransferase acceptor and capillary electrophoresis was used to screen a genomic library of N. meningitidis MC58 L3 in a "divide and conquer" strategy. The gene, denoted lst, was found on a 2. 0-kilobase fragment of DNA, and its sequence was determined and then used to design probes to amplify and subsequently clone the corresponding lst genes from N. meningitidis 406Y L3, N. meningitidis M982B L7, and N. gonorrhoeae F62. Functional sialyltransferase was produced from the genes derived from both L3 N. meningitidis strains and the N. gonorrhoeae F62. However, the N. meningitidis M982B L7 gene contained a frameshift mutation that renders it inactive. The expression of the lst gene was easily detected using the enzyme assay, and the protein expression could be detected when an immunodetection tag was added to the COOH-terminal end of the protein. Using the synthetic acceptor N-acetyllactosamine-aminophenyl-(6-(5-(fluorescein-carboxamido)-hexan oic acid amide), the alpha-2,3 specificity of the enzyme was confirmed by NMR examination of the reaction product. The enzyme could also use synthetic acceptors with lactose or galactose as the saccharide portion. This study is the first example of the cloning, expression, and examination of alpha-2,3-sialyltransferase activity from a bacterial source

    Structural and Mechanistic Analysis of Sialic Acid Synthase NeuB from Neisseria meningitidis in Complex with Mn2+, Phosphoenolpyruvate, and N-Acetylmannosaminitol *

    Get PDF
    In Neisseria meningitidis and related bacterial pathogens, sialic acids play critical roles in mammalian cell immunity evasion and are synthesized by a conserved enzymatic pathway that includes sialic acid synthase (NeuB, SiaC, or SynC). NeuB catalyzes the condensation of phosphoenolpyruvate (PEP) and N-acetylmannosamine, directly forming N-acetylneuraminic acid (or sialic acid). In this paper we report the development of a coupled assay to monitor NeuB reaction kinetics and an 18O-labeling study that demonstrates the synthase operates via a C-O bond cleavage mechanism. We also report the first structure of a sialic acid synthase, that of NeuB, revealing a unique domain-swapped homodimer architecture consisting of a (beta/alpha)8 barrel (TIM barrel)-type fold at the N-terminal end and a domain with high sequence identity and structural similarity to the ice binding type III antifreeze proteins at the C-terminal end of the enzyme. We have determined the structures of NeuB in the malate-bound form and with bound PEP and the substrate analog N-acetylmannosaminitol to 1.9 and 2.2 A resolution, respectively. Typical of other TIM barrel proteins, the active site of NeuB is located in a cavity at the C-terminal end of the barrel; however, the positioning of the swapped antifreeze-like domain from the adjacent monomer provides key residues for hydrogen bonding with substrates in the active site of NeuB, a structural feature that leads to distinct modes of substrate binding from other PEP-utilizing enzymes that lack an analogous antifreeze-like domain. Our observation of a direct interaction between a highly ordered manganese and the N-acetylmannosaminitol in the NeuB active site also suggests an essential role for the ion as an electrophilic catalyst that activates the N-acetylmannosamine carbonyl to the addition of PEP

    Intermediate Trapping on a Mutant Retaining α-Galactosyltransferase Identifies an Unexpected Aspartate Residue *

    Get PDF
    Lipopolysaccharyl-alpha-1,4-galactosyltransferase C (LgtC), a glycosyltransferase family 8 alpha-1,4-galactosyltransferase from Neisseria meningitidis, catalyzes the transfer of galactose from UDP galactose to terminal lactose-containing acceptor sugars with net retention of anomeric configuration. To investigate the potential role of discrete nucleophilic catalysis suggested by the double displacement mechanism generally proposed for retaining glycosyltransferases, the side chain amide of Gln-189, which is suitably positioned to act as the catalytic nucleophile of LgtC, was substituted with the more nucleophilic carboxylate-containing side chain of glutamate in the hope of accumulating a glycosyl-enzyme intermediate. The resulting mutant was subjected to kinetic, mass spectrometric, and x-ray crystallographic analysis. Although the K(m) for UDP-galactose is not significantly altered, the k(cat) was reduced to 3% that of the wild type enzyme. Electrospray mass spectrometric analysis revealed that a steady state population of the Q189E variant contains a covalently bound galactosyl moiety. Liquid chromatographic/mass spectrometric analysis of fragmented proteolytic digests identified the site of labeling not as Glu-189 but, surprisingly, as the sequentially adjacent Asp-190. However, the side chain carboxylate of Asp-190 is located 8.9 A away from the donor substrate in the available crystal structure. Kinetic analysis of a D190N mutant at this position revealed a k(cat) value 3000-fold lower than that of the wild type enzyme. A 2.6-A crystal structure of the Q189E mutant with bound uridine 5'-diphospho-2-deoxy-2-fluoro-alpha-d-galactopyranose revealed no significant perturbation of the mode of donor sugar binding nor of active site configuration. This is the first trapping of an intermediate in the active site of a retaining glycosyltransferase and, although not conclusive, implicates Asp-190 as an alternative candidate catalytic nucleophile, thereby rekindling a longstanding mechanistic debate

    Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-mhz (1)h and (13)c NMR analysis.

    Get PDF
    We have applied two strategies for the cloning of four genes responsible for the biosynthesis of the GT1a ganglioside mimic in the lipooligosaccharide (LOS) of a bacterial pathogen,Campylobacter jejuni OH4384, which has been associated with Guillain-Barre syndrome. We first cloned a gene encoding an α-2,3-sialyltransferase (cst-I) using an activity screening strategy. We then used nucleotide sequence information from the recently completed sequence from C. jejuni NCTC 11168 to amplify a region involved in LOS biosynthesis from C. jejuni OH4384. The LOS biosynthesis locus from C. jejuni OH4384 is 11.47 kilobase pairs and encodes 13 partial or complete open reading frames, while the corresponding locus in C. jejuni NCTC 11168 spans 13.49 kilobase pairs and contains 15 open reading frames, indicating a different organization between these two strains. Potential glycosyltransferase genes were cloned individually, expressed in Escherichia coli, and assayed using synthetic fluorescent oligosaccharides as acceptors. We identified genes encoding a β-1,4-N-acetylgalactosaminyl-transferase (cgtA), a β-1,3-galactosyltransferase (cgtB), and a bifunctional sialyltransferase (cst-II), which transfers sialic acid to O-3 of galactose and to O-8 of a sialic acid that is linked α-2,3- to a galactose. The linkage specificity of each identified glycosyltransferase was confirmed by NMR analysis at 600 MHz on nanomole amounts of model compounds synthesized in vitro. Using a gradient inverse broadband nano-NMR probe, sequence information could be obtained by detection of3J(C,H) correlations across the glycosidic bond. The role of cgtA and cst-II in the synthesis of the GT1a mimic in C. jejuni OH4384 were confirmed by comparing their sequence and activity with corresponding homologues in two relatedC. jejuni strains that express shorter ganglioside mimics in their LOS

    Identification of a bifunctional lipopolysaccharide sialyltransferase in Haemophilus influenzae - Incorporation of disialic acid

    Get PDF
    The lipopolysaccharide (LPS) of non-typeable Haemophilus influenzae (NTHi) can be substituted at various positions by N-acetylneuraminic acid (Neu5Ac). LPS sialylation plays an important role in pathogenesis. The only LPS sialyltransferase characterized biochemically to date in H. influenzae is Lic3A, an alpha-2,3-sialyltransferase responsible for the addition of Neu5Ac to a lactose acceptor (Hood, D. W., Cox, A. D., Gilbert, M., Makepeace, K., Walsh, S., Deadman, M. E., Cody, A., Martin, A., Mansson, M., Schweda, E. K., Brisson, J.R., Richards, J.C., Moxon, E.R., and Wakarchuk, W.W. (2001) Mol. Microbiol. 39, 341-350). Here we describe a second sialyltransferase, Lic3B, that is a close homologue of Lic3A and present in 60% of NTHi isolates tested. A recombinant form of Lic3B was expressed in Escherichia coli and purified by affinity chromatography. We used synthetic fluorescent acceptors with a terminal lactose or sialyllactose to show that Lic3B has both alpha-2,3- and alpha-2,8-sialyltransferase activities. Structural analysis of LPS from lic3B mutant strains of NTHi confirmed that only monosialylated species were detectable, whereas disialylated species were detected upon inactivation of lic3A. Furthermore, introduction of lic3B into a lic3B-deficient strain background resulted in a significant increase in sialylation in the recipient strain. Mass spectrometric analysis of LPS indicated that glycoforms containing two Neu5Ac residues were evident that were not present in the LPS of the parent strain. These findings characterize the activity of a second sialyltransferase in H. influenzae, responsible for the addition of di-sialic acid to the LPS. Modification of the LPS by di-sialylation conferred increased resistance of the organism to the killing effects of normal human serum, as compared with mono-sialylated or non-sialylated species, indicating that this modification has biological significance

    Targeted metatranscriptomics of compost derived consortia reveals a GH11 exerting an unusual exo-1,4-β-xylanase activity

    Get PDF
    Background: Using globally abundant crop residues as a carbon source for energy generation and renewable chemicals production stands out as a promising solution to reduce current dependency on fossil fuels. In nature, such as in compost habitats, microbial communities efficiently degrade the available plant biomass using a diverse set of synergistic enzymes. However, deconstruction of lignocellulose remains a challenge for industry due to recalcitrant nature of the substrate and the inefficiency of the enzyme systems available, making the economic production of lignocellulosic biofuels difficult. Metatranscriptomic studies of microbial communities can unveil the metabolic functions employed by lignocellulolytic consortia and identify new biocatalysts that could improve industrial lignocellulose conversion. Results: In this study, a microbial community from compost was grown in minimal medium with sugarcane bagasse sugarcane bagasse as the sole carbon source. Solid-state nuclear magnetic resonance was used to monitor lignocellulose degradation; analysis of metatranscriptomic data led to the selection and functional characterization of several target genes, revealing the first glycoside hydrolase from Carbohydrate Active Enzyme family 11 with exo-1,4-β-xylanase activity. The xylanase crystal structure was resolved at 1.76 Å revealing the structural basis of exo-xylanase activity. Supplementation of a commercial cellulolytic enzyme cocktail with the xylanase showed improvement in Avicel hydrolysis in the presence of inhibitory xylooligomers. Conclusions: This study demonstrated that composting microbiomes continue to be an excellent source of biotechnologically important enzymes by unveiling the diversity of enzymes involved in in situ lignocellulose degradation
    • …
    corecore