48 research outputs found

    Phagocytic response to fully controlled plural stimulation of antigens on macrophage using on-chip microcultivation system

    Get PDF
    To understand the control mechanism of innate immune response in macrophages, a series of phagocytic responses to plural stimulation of antigens on identical cells was observed. Two zymosan particles, which were used as antigens, were put on different surfaces of a macrophage using optical tweezers in an on-chip single-cell cultivation system, which maintains isolated conditions of each macrophage during their cultivation. When the two zymosan particles were attached to the macrophage simultaneously, the macrophage responded and phagocytosed both of the antigens simultaneously. In contrast, when the second antigen was attached to the surface after the first phagocytosis had started, the macrophage did not respond to the second stimulation during the first phagocytosis; the second phagocytosis started only after the first process had finished. These results indicate that (i) phagocytosis in a macrophage is not an independent process when there are plural stimulations; (ii) the response of the macrophage to the second stimulation is related to the time" delay from the first stimulation. Stimulations that occur at short time intervals resulted in simultaneous phagocytosis, while a second stimulation that is delayed long enough might be neglected until the completion of the first phagocytic process

    Scale invariance of cell size fluctuations in starving bacteria

    Full text link
    In stable environments, cell size fluctuations are thought to be governed by simple physical principles, as suggested by recent findings of scaling properties. Here, by developing a microfluidic device and using E. coli, we investigate the response of cell size fluctuations against starvation. By abruptly switching to non-nutritious medium, we find that the cell size distribution changes but satisfies scale invariance: the rescaled distribution is kept unchanged and determined by the growth condition before starvation. These findings are underpinned by a model based on cell growth and cell cycle. Further, we numerically determine the range of validity of the scale invariance over various characteristic times of the starvation process, and find the violation of the scale invariance for slow starvation. Our results, combined with theoretical arguments, suggest the relevance of the multifork replication, which helps retaining information of cell cycle states and may thus result in the scale invariance.Comment: 15+23 pages, 5+11 figures and 2 table

    Single-cell dynamics of the chromosome replication and cell division cycles in mycobacteria

    Get PDF
    During the bacterial cell cycle, chromosome replication and cell division must be coordinated with overall cell growth in order to maintain the correct ploidy and cell size. The spatial and temporal coordination of these processes in mycobacteria is not understood. Here we use microfluidics and time-lapse fluorescence microscopy to measure the dynamics of cell growth, division and chromosome replication in single cells of Mycobacterium smegmatis. We find that single-cell growth is size-dependent (large cells grow faster than small cells), which implicates a size-control mechanism in cell-size homoeostasis. Asymmetric division of mother cells gives rise to unequally sized sibling cells that grow at different velocities but show no differential sensitivity to antibiotics. Individual cells are restricted to one round of chromosome replication per cell division cycle, although replication usually initiates in the mother cell before cytokinesis and terminates in the daughter cells after cytokinesis. These studies reveal important differences between cell cycle organization in mycobacteria compared with better-studied model organisms

    Data from: Aging, mortality, and the fast growth trade-off of Schizosaccharomyces pombe

    No full text
    Replicative aging has been demonstrated in asymmetrically dividing unicellular organisms, seemingly caused by unequal damage partitioning. Although asymmetric segregation and inheritance of potential aging factors also occurs in symmetrically dividing species, it nevertheless remains controversial whether this results in aging. Based on large-scale single-cell lineage data obtained by time-lapse microscopy with a microfluidic device, in this report, we demonstrate the absence of replicative aging in old-pole cell lineages of Schizosaccharomyces pombe cultured under constant favorable conditions. By monitoring more than 1,500 cell lineages in seven different culture conditions, we showed that both cell division and death rates are remarkably constant for at least 50–80 generations. Our measurements revealed that the death rate per cellular generation increases with division rate, pointing to a physiological trade-off with fast growth under balanced growth conditions. We also observed the formation and inheritance of Hsp104-associated protein aggregates, which are a potential aging factor in old-pole cell lineages, and found that these aggregates exhibited a tendency to preferentially remain at the old-poles for several generations. However, the aggregates were eventually segregated from old-pole cells upon cell division and probabilistically allocated to new-pole cells. We found that cell deaths were typically preceded by sudden acceleration of protein aggregation, thus relatively large amount of protein aggregates existed at the very ends of the dead cell lineages. Our lineage tracking analyses, however, revealed that the quantity and inheritance of protein aggregates increased neither cellular generation time nor cell death initiation rates. Furthermore, our results demonstrated that unusually large amounts of protein aggregates induced by oxidative stress exposure did not result in aging; old-pole cells resumed normal growth upon stress removal, despite the fact that most of them inherited significant quantities of aggregates. These results collectively indicate that protein aggregates are not a major determinant of triggering cell death in S. pombe, and thus cannot be an appropriate molecular marker or index for replicative aging under both favorable and stressful environmental conditions
    corecore