14 research outputs found
Production of Functionally Deficient Dendritic Cells from HTLV-I-Infected Monocytes: Implications for the Dendritic Cell Defect in Adult T Cell Leukemia
AbstractAdult T cell leukemia (ATL) is induced by an infection with human T lymphotropic virus type I (HTLV-I) and is accompanied by immunodeficiency. Monocyte-derived immature dendritic cells (DCs) donated by 11 ATL patients were suppressed in the ability to take up fluorescein isothiocyanate (FITC)–dextran and were down-regulated in the expression of CD1a and CD86 antigens (Ags). Monocytes from the patients showed impaired expression of CD14 and HLA-DR Ags. These results suggest intrinsic abnormalities of monocytes and a defect of DC maturation in ATL patients. Therefore, we examined the influence of HTLV-I infection of monocytes on their differentiation to DCs. Monocytes obtained from healthy donors were susceptible to HTLV-I infection in vitro. HTLV-I-infected monocytes were down-regulated in the expression of CD14 Ags, and immature DCs obtained from them expressed CD1a poorly and were impaired in the ability to take up FITC–dextran. Mature DCs differentiated from these cells could not stimulate autologous CD4+ T cell or CD8+ T cell proliferation, even after being secondarily pulsed with HTLV-I at an immature DC stage. These results suggest that HTLV-I-infected monocytes cannot properly differentiate to DCs and that this might be one of the important mechanisms producing dysfunctional DCs in ATL patients
Structural basis for Ccd1 auto-inhibition in the Wnt pathway through homomerization of the DIX domain
Wnt signaling plays an important role in governing cell fate decisions. Coiled-coil-DIX1 (Ccd1), Dishevelled (Dvl), and Axin are signaling proteins that regulate the canonical pathway by controlling the stability of a key signal transducer β-catenin. These proteins contain the DIX domain with a ubiquitin-like fold, which mediates their interaction in the β-catenin destruction complex through dynamic head-to-tail polymerization. Despite high sequence similarities, mammalian Ccd1 shows weaker stimulation of β-catenin transcriptional activity compared with zebrafish (z) Ccd1 in cultured cells. Here, we show that the mouse (m) Ccd1 DIX domain displays weaker ability for homopolymerization than that of zCcd1. Furthermore, X-ray crystallographic analysis of mCcd1 and zCcd1 DIX domains revealed that mCcd1 was assembled into a double-helical filament by the insertion of the β1-β2 loop into the head-to-tail interface, whereas zCcd1 formed a typical single-helical polymer similar to Dvl1 and Axin. The mutation in the contact interface of mCcd1 double-helical polymer changed the hydrodynamic properties of mCcd1 so that it acquired the ability to induce Wnt-specific transcriptional activity similar to zCcd1. These findings suggest a novel regulatory mechanism by which mCcd1 modulates Wnt signaling through auto-inhibition of dynamic head-to-tail homopolymerization
Microscopic observation of efficient charge transport processes across domain boundaries in donor-acceptor-type conjugated polymers
Backbone rigidity of conjugated polymers is suggested to play an essential role in realizing high-mobility transistors through the efficient interconnection of crystalline domains by tie molecules as discussed for the recently-developed donor-acceptor (DA)-type copolymers. However, no studies have directly observed interdomain hopping in these DA copolymers. Here, highly-efficient interdomain charge transport is observed in two typical high-mobility DA copolymers from the microscopic observation of charge carriers using field-induced electron spin resonance (ESR) spectroscopy. The in-plane ESR signal exhibits a clear motional narrowing effect associated with the carrier motion across the boundaries. The activation energy of the interdomain charge motion is as low as that of intradomain motion (~10 meV), both of which are clearly lower than those observed in the conventional semicrystalline polymer. The structural origin of this efficient interdomain electrical connection is the rigid, nearly torsion-free backbone conformation of the tie molecule, as demonstrated from density functional theory calculations.11Ysciescopu
Observation of Protein and Lipid Membrane Structures in a Model Mimicking the Molecular Crowding Environment of Cells Using Neutron Scattering and Cell Debris
The interior of living cells is a molecular-crowding environment, where large quantities of various molecules coexist. Investigations into the nature of this environment are essential for an understanding of both the elaborate biological reactions and maintenance of homeostasis occurring therein. The equilibrium states of biological macromolecular systems are affected by molecular crowding environments unmatched by in vitro diluted environments; knowledge about crowding effects is still insufficient due to a lack of relevant experimental studies. Recent developments in the techniques of in-cell NMR and large-scale molecular dynamics simulation are providing new insights into the structure and dynamics of biological molecules inside cells. This study focused on a new experimental technique to directly observe the structure of a specific protein or membrane in condensed crowder solutions using neutron scattering. Deuterated whole-cell debris was used to reproduce an environment that more closely mimics the interior of living cells than models used previously. By the reduction of the background-scattering from large amounts of cell debris, we successfully extracted structure information for both a small globular protein and a small unilamellar vesicle (SUV) from the concentrated cell-debris solution up to a weight ratio of 1/60 for protein/crowder and 1/40 for SUV/crowder
Nonsense and Frameshift Mutations in ZFHX1B, Encoding Smad-Interacting Protein 1, Cause a Complex Developmental Disorder with a Great Variety of Clinical Features
Mutations in ZFHX1B, encoding Smad-interacting protein 1 (SIP1), have been recently reported to cause a form of Hirschsprung disease (HSCR). Patients with ZFHX1B deficiency typically show mental retardation, delayed motor development, epilepsy, microcephaly, distinct facial features, and/or congenital heart disease, in addition to the cardinal form of HSCR. To investigate the breadth of clinical variation, we studied DNA samples from six patients with clinical profiles quite similar to those described elsewhere for ZFHX1B deficiency, except that they did not have HSCR. The results showed the previously reported R695X mutation to be present in three cases, with three novel mutations—a 2-bp insertion (760insCA resulting in 254fs262X), a single-base deletion (270delG resulting in 91fs107X), and a 2-bp deletion (2178delTT resulting in 727fs754X)—newly identified in the other three. All mutations occurred in one allele and were de novo events. These results demonstrate that ZFHX1B deficiency is an autosomal dominant complex developmental disorder and that individuals with functional null mutations present with mental retardation, delayed motor development, epilepsy, and a wide spectrum of clinically heterogeneous features suggestive of neurocristopathies at the cephalic, cardiac, and vagal levels