164 research outputs found

    Evidence that oxidative stress is increased in patients with X-linked adrenoleukodystrophy

    Get PDF
    AbstractX-linked adrenoleukodystrophy (X-ALD) is a hereditary disorder of peroxisomal metabolism biochemically characterized by the accumulation of very long chain fatty acids (VLCFA), particularly hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) in different tissues and in biological fluids. The disease is clinically characterized by central and peripheral demyelination and adrenal insufficiency, which is closely related to the increased concentrations of these fatty acids. However, the mechanisms underlying the brain damage in X-ALD are poorly known. Considering that free radical generation is involved in various neurodegererative disorders, like Parkinson disease, multiple sclerosis and Alzheimer's disease, in the present study we evaluated various oxidative stress parameters, namely chemiluminescence, thiobarbituric acid reactive species (TBA-RS), total radical-trapping antioxidant potential (TRAP), and total antioxidant reactivity (TAR) in plasma of X-ALD patients, as well as the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) in erythrocytes and fibroblasts from these patients. It was verified a significant increase of plasma chemiluminescence and TBA-RS, reflecting induction of lipid peroxidation, as well as a decrease of plasma TAR, indicating a deficient capacity to rapidly handle an increase of reactive species. We also observed a significant increase of erythrocytes GPx activity and of catalase and SOD activities in fibroblasts from the patients studied. It is therefore proposed that oxidative stress may be involved in pathophysiology of X-ALD

    Inhibition of brain energy metabolism by the α-keto acids accumulating in maple syrup urine disease

    Get PDF
    AbstractNeurological dysfunction is a common finding in patients with maple syrup urine disease (MSUD). However, the mechanisms underlying the neuropathology of brain damage in this disorder are poorly known. In the present study, we investigated the effect of the in vitro effect of the branched chain α-keto acids (BCKA) accumulating in MSUD on some parameters of energy metabolism in cerebral cortex of rats. [14CO2] production from [14C] acetate, glucose uptake and lactate release from glucose were evaluated by incubating cortical prisms from 30-day-old rats in Krebs–Ringer bicarbonate buffer, pH 7.4, in the absence (controls) or presence of 1–5 mM of α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid (KMV) or α-ketoisovaleric acid (KIV). All keto acids significantly reduced 14CO2 production by around 40%, in contrast to lactate release and glucose utilization, which were significantly increased by the metabolites by around 42% in cortical prisms. Furthermore, the activity of the respiratory chain complex I–III was significantly inhibited by 60%, whereas the other activities of the electron transport chain, namely complexes II, II–III, III and IV, as well as succinate dehydrogenase were not affected by the keto acids. The results indicate that the major metabolites accumulating in MSUD compromise brain energy metabolism by blocking the respiratory chain. We presume that these findings may be of relevance to the understanding of the pathophysiology of the neurological dysfunction of MSUD patients

    Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease

    Get PDF
    Maple syrup urine disease (MSUD) is an inherited disorder of branched-chain amino acid metabolism presenting with lifethreatening cerebral oedema and dysmyelination in affected individuals. Treatment requires life-long dietary restriction and monitoring of branched-chain amino acids to avoid brain injury. Despite careful management, children commonly suffer metabolic decompensation in the context of catabolic stress associated with non-specific illness. The mechanisms underlying this decompensation and brain injury are poorly understood. Using recently developed mouse models of classic and intermediate maple syrup urine disease, we assessed biochemical, behavioural and neuropathological changes that occurred during encephalopathy in these mice. Here, we show that rapid brain leucine accumulation displaces other essential amino acids resulting in neurotransmitter depletion and disruption of normal brain growth and development. A novel approach of administering norleucine to heterozygous mothers of classic maple syrup urine disease pups reduced branched-chain amino acid accumulation in milk as well as blood and brain of these pups to enhance survival. Similarly, norleucine substantially delayed encephalopathy in intermediate maple syrup urine disease mice placed on a high protein diet that mimics the catabolic stress shown to cause encephalopathy in human maple syrup urine disease. Current findings suggest two converging mechanisms of brain injury in maple syrup urine disease including: (i) neurotransmitter deficiencies and growth restriction associated with branchedchain amino acid accumulation and (ii) energy deprivation through Krebs cycle disruption associated with branched-chain ketoacid accumulation. Both classic and intermediate models appear to be useful to study the mechanism of brain injury and potential treatment strategies for maple syrup urine disease. Norleucine should be further tested as a potential treatment to prevent encephalopathy in children with maple syrup urine disease during catabolic stress

    Carglumic acid: an additional therapy in the treatment of organic acidurias with hyperammonemia?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperammonemia in patients with methylmalonic aciduria (MMA) and propionic aciduria (PA) is caused by accumulation of propionyl-CoA which decreases the synthesis of N-acetyl-glutamate, the natural activator of carbamyl phosphate synthetase 1. A treatment approach with carglumic acid, the structural analogue of N-acetyl-glutamate, has been proposed to decrease high ammonia levels encountered in MMA and PA crises.</p> <p>Case presentation</p> <p>We described two patients (one with MMA and one with PA) with hyperammonemia at diagnosis. Carglumic acid, when associated with standard treatment of organic acidurias, may be helpful in normalizing the ammonia level.</p> <p>Conclusion</p> <p>Even though the usual treatment which decreases toxic metabolites remains the standard, carglumic acid could be helpful in lowering plasma ammonia levels over 400 micromol/L more rapidly.</p

    Differential HMG-CoA lyase expression in human tissues provides clues about 3-hydroxy-3-methylglutaric aciduria

    Get PDF
    3-Hydroxy-3-methylglutaric aciduria is a rare human autosomal recessive disorder caused by deficiency of 3-hydroxy-3-methylglutaryl CoA lyase (HL). This mitochondrial enzyme catalyzes the common final step of leucine degradation and ketogenesis. Acute symptoms include vomiting, seizures and lethargy, accompanied by metabolic acidosis and hypoketotic hypoglycaemia. Such organs as the liver, brain, pancreas, and heart can also be involved. However, the pathophysiology of this disease is only partially understood. We measured mRNA levels, protein expression and enzyme activity of human HMG-CoA lyase from liver, kidney, pancreas, testis, heart, skeletal muscle, and brain. Surprisingly, the pancreas is, after the liver, the tissue with most HL activity. However, in heart and adult brain, HL activity was not detected in the mitochondrial fraction. These findings contribute to our understanding of the enzyme function and the consequences of its deficiency and suggest the need for assessment of pancreatic damage in these patients
    corecore