413 research outputs found

    An asymptotic form of the reciprocity theorem with applications in x-ray scattering

    Full text link
    The emission of electromagnetic waves from a source within or near a non-trivial medium (with or without boundaries, crystalline or amorphous, with inhomogeneities, absorption and so on) is sometimes studied using the reciprocity principle. This is a variation of the method of Green's functions. If one is only interested in the asymptotic radiation fields the generality of these methods may actually be a shortcoming: obtaining expressions valid for the uninteresting near fields is not just a wasted effort but may be prohibitively difficult. In this work we obtain a modified form the reciprocity principle which gives the asymptotic radiation field directly. The method may be used to obtain the radiation from a prescribed source, and also to study scattering problems. To illustrate the power of the method we study a few pedagogical examples and then, as a more challenging application we tackle two related problems. We calculate the specular reflection of x rays by a rough surface and by a smoothly graded surface taking polarization effects into account. In conventional treatments of reflection x rays are treated as scalar waves, polarization effects are neglected. This is a good approximation at grazing incidence but becomes increasingly questionable for soft x rays and UV at higher incidence angles. PACs: 61.10.Dp, 61.10.Kw, 03.50.DeComment: 19 pages, 4 figure

    Detection of Aortic Arch Calcification in Apolipoprotein E-Null Mice Using Carbon Nanotube-Based Micro-CT System

    Get PDF
    BackgroundWe performed in vivo micro‐computed tomography (micro‐CT) imaging using a novel carbon nanotube (CNT)–based x‐ray source to detect calcification in the aortic arch of apolipoprotein E (apoE)–null mice.Methods and ResultsWe measured calcification volume of aortic arch plaques using CNT‐based micro‐CT in 16‐ to 18‐month‐old males on 129S6/SvEvTac and C57BL/6J genetic backgrounds (129‐apoE KO and B6‐apoE KO). Cardiac and respiratory gated images were acquired in each mouse under anesthesia. Images obtained using a CNT micro‐CT had less motion blur and better spatial resolution for aortic calcification than those using conventional micro‐CT, evaluated by edge sharpness (slope of the normalized attenuation units, 1.6±0.3 versus 0.8±0.2) and contrast‐to‐noise ratio of the calcifications (118±34 versus 10±2); both P<0.05, n=6. Calcification volume in the arch inner curvature was 4 times bigger in the 129‐apoE KO than in the B6‐apoE KO mice (0.90±0.18 versus 0.22±0.10 mm3, P<0.01, n=7 and 5, respectively), whereas plaque areas in the inner curvature measured in dissected aorta were only twice as great in the 129‐apoE KO than in the B6‐apoE KO mice (6.1±0.6 versus 3.7±0.4 mm2, P<0.05). Consistent with this, histological calcification area in the plaques was significantly higher in the 129‐apoE KO than in the B6‐apoE KO mice (16.9±2.0 versus 9.6±0.8%, P<0.05, 3 animals for each).ConclusionsA novel CNT‐based micro‐CT is a useful tool to evaluate vascular calcifications in living mice. Quantification from acquired images suggests higher susceptibility to calcification of the aortic arch plaques in 129‐apoE KO than in B6‐apoE KO mice

    Revival of the magnetar PSR J1622-4950: observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR

    Get PDF
    New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100x larger than during its dormant state. The X-ray flux one month after reactivation was at least 800x larger than during quiescence, and has been decaying exponentially on a 111+/-19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6-8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation.Comment: Published in ApJ (2018 April 5); 13 pages, 4 figure

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure

    In vivo and ex vivo effects of propofol on myocardial performance in rats with obstructive jaundice

    Get PDF
    BACKGROUND: Responsiveness of the 'jaundiced heart' to propofol is not completely understood. The purpose of this study was to evaluate the effect of propofol on myocardial performance in rats with obstructive jaundice. METHODS: Male Sprague-Dawley rats (n = 40) were randomly allocated into two groups, twenty underwent bile duct ligation (BDL), and 20 underwent a sham operation. Seven days after the surgery, propofol was administered in vivo and ex vivo (Langendorff preparations). Heart rate, left ventricular end-systolic pressure (LVESP) left ventricular end-diastolic pressure (LVEDP), and maximal rate for left ventricular pressure rise and decline (+/- dP/dtmax ) were measured to determine the influence of propofol on the cardiac function of rats. RESULTS: Impaired basal cardiac function was observed in the isolated BDL hearts, whereas in vivo indices of basal cardiac function (LVESP and +/- dP/dt) in vivo were significantly higher in rats that underwent BDL compared with controls. With low or intermediate concentrations of propofol, these indices of cardiac function were within the normal physiologic range in both groups, and responsiveness to propofol was unaffected by BDL. When the highest concentration of propofol was administrated, a significant decline in cardiac function was observed in the BDL group. CONCLUSIONS: In rats that underwent BDL, basal cardiac performance was better in vivo and worse ex vivo compared with controls. Low and intermediate concentrations of propofol did not appear to impair cardiac function in rats with obstructive jaundice.published_or_final_versio
    corecore