4,471 research outputs found
A review of patient choice in the NHS
By December 2005 National Health Service (NHS) patients who may require elective
surgery will be offered a choice of four to five hospitals at the referral
stage, as part of the government’s vision for a responsive, patient-centric
health service. The Healthcare Management Research Group of Cranfield
Postgraduate Medical School has been working with Bedford Hospital NHS Trust to
evaluate the possible implications of patient choice, and this document provides
an overview of the current situation and predicted changes. During February and
March 2004 a number of meetings were held with key NHS stakeholders, including
Strategic Health Authorities (SHAs), Primary Care Trusts (PCTs) and General
Practitioners (GPs) in Bedfordshire, Hertfordshire, Cambridgeshire,
Huntingdonshire and Northamptonshire, and also the Department of Health in
London. Conclusions from these interviews form the core of the research and are
reinforced by a literature review of academic papers, news articles, books,
government guidelines and opinion surveys. In particular, the process by which
PCTs commission secondary care providers is assessed and the nine pilot schemes
are evaluated. The Department of Health’s report on pilots also provides a
valuable insight into the practicalities of offering choice. Lessons learned
from healthcare systems around the world are compared with current policy in the
NHS, and finally there is critique of the challenges to the implementation of
ch
Asymptotic silence-breaking singularities
We discuss three complementary aspects of scalar curvature singularities:
asymptotic causal properties, asymptotic Ricci and Weyl curvature, and
asymptotic spatial properties. We divide scalar curvature singularities into
two classes: so-called asymptotically silent singularities and non-generic
singularities that break asymptotic silence. The emphasis in this paper is on
the latter class which have not been previously discussed. We illustrate the
above aspects and concepts by describing the singularities of a number of
representative explicit perfect fluid solutions.Comment: 25 pages, 6 figure
Self-similar Bianchi models: I. Class A models
We present a study of Bianchi class A tilted cosmological models admitting a
proper homothetic vector field together with the restrictions, both at the
geometrical and dynamical level, imposed by the existence of the simply
transitive similarity group. The general solution of the symmetry equations and
the form of the homothetic vector field are given in terms of a set of
arbitrary integration constants. We apply the geometrical results for tilted
perfect fluids sources and give the general Bianchi II self-similar solution
and the form of the similarity vector field. In addition we show that
self-similar perfect fluid Bianchi VII models and irrotational Bianchi
VI models do not exist.Comment: 14 pages, Latex; to appear in Classical and Quantum Gravit
A new proof of the Bianchi type IX attractor theorem
We consider the dynamics towards the initial singularity of Bianchi type IX
vacuum and orthogonal perfect fluid models with a linear equation of state. The
`Bianchi type IX attractor theorem' states that the past asymptotic behavior of
generic type IX solutions is governed by Bianchi type I and II vacuum states
(Mixmaster attractor). We give a comparatively short and self-contained new
proof of this theorem. The proof we give is interesting in itself, but more
importantly it illustrates and emphasizes that type IX is special, and to some
extent misleading when one considers the broader context of generic models
without symmetries.Comment: 26 pages, 5 figure
Particle Production of Vector Fields: Scale Invariance is Attractive
In a model of an Abelian vector boson with a Maxwell kinetic term and non-negative mass-squared it is demonstrated that, under fairly general conditions during inflation, a scale-invariant spectrum of perturbations for the components of a vector field, massive or not, whose kinetic function (and mass) is modulated by the inflaton field is an attractor solution. If the field is massless, or if it remains light until the end of inflation, this attractor solution also generates anisotropic stress, which can render inflation weakly anisotropic. The above two characteristics of the attractor solution can source (independently or combined together) significant statistical anisotropy in the curvature perturbation, which may well be observable in the near future
The flatness problem and
By way of a complete integration of the Friedmann equations, in terms of
observables, it is shown that for the cosmological constant there
exist non-flat FLRW models for which the total density parameter
remains throughout the entire history of the universe. Further, it is
shown that in a precise quantitative sense these models are not finely tuned.
When observations are brought to bear on the theory, and in particular the WMAP
observations, they confirm that we live in just such a universe. The conclusion
holds when the classical notion of is extended to dark energy.Comment: Final form to appear in Physical Review Letters. Further information
at http://grtensor.org/Robertson
Gravity Waves from a Cosmological Phase Transition: Gauge Artifacts and Daisy Resummations
The finite-temperature effective potential customarily employed to describe
the physics of cosmological phase transitions often relies on specific gauge
choices, and is manifestly not gauge-invariant at finite order in its
perturbative expansion. As a result, quantities relevant for the calculation of
the spectrum of stochastic gravity waves resulting from bubble collisions in
first-order phase transitions are also not gauge-invariant. We assess the
quantitative impact of this gauge-dependence on key quantities entering
predictions for gravity waves from first order cosmological phase transitions.
We resort to a simple abelian Higgs model, and discuss the case of R_xi gauges.
By comparing with results obtained using a gauge-invariant Hamiltonian
formalism, we show that the choice of gauge can have a dramatic effect on
theoretical predictions for the normalization and shape of the expected gravity
wave spectrum. We also analyze the impact of resumming higher-order
contributions as needed to maintain the validity of the perturbative expansion,
and show that doing so can suppress the amplitude of the spectrum by an order
of magnitude or more. We comment on open issues and possible strategies for
carrying out "daisy resummed" gauge invariant computations in non-Abelian
models for which a gauge-invariant Hamiltonian formalism is not presently
available.Comment: 25 pages, 10 figure
Bianchi VIII Empty Futures
Using a qualitative analysis based on the Hamiltonian formalism and the
orthonormal frame representation we investigate whether the chaotic behaviour
which occurs close to the initial singularity is still present in the far
future of Bianchi VIII models. We describe some features of the vacuum Bianchi
VIII models at late times which might be relevant for studying the nature of
the future asymptote of the general vacuum inhomogeneous solution to the
Einstein field equations.Comment: 22 pages, no figures, Latex fil
- …
