1,257 research outputs found

    Definition of Virtual Reality simulation models using Specification and Description Language Diagrams

    Get PDF
    A full representation of a simulation model encompasses the behavior of the elements that define the model, the definition of the probability distributions that define the delays of the events that control the model, the experimental framework needed for execution, and the graphical representation of certain model elements. This paper aims to use specification and description language to achieve a full model representation by adding two extensions to the language, which allows for a complete and unambiguous definition of a discrete simulation model that is similar to a common discrete operations research simulation tool.Peer ReviewedPostprint (published version

    Assessment of the structure and variability of Weddell Sea water masses in distinct ocean reanalysis products

    Get PDF
    We assessed and evaluated the performance of five ocean reanalysis products in reproducing essential hydrographic properties and their associated temporal variability for the Weddell Sea, Antarctica. The products used in this assessment were ECMWF ORAS4 (European Centre for Medium-Range Weather Forecasts Ocean Reanalysis System 4), CFSR (Climate Forecast System Reanalysis), MyOcean UR025.4 (University of Reading), ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II) and SODA (Simple Ocean Data Assimilation). The present study focuses on the Weddell Sea deep layer, which is composed of the following three main water masses: Warm Deep Water (WDW), Weddell Sea Deep Water (WSDW) and Weddell Sea Bottom Water (WSBW). The MyOcean UR025.4 product provided the most accurate representation of the structure and thermohaline properties of the Weddell Sea water masses when compared with observations. All the ocean reanalysis products analyzed exhibited limited capabilities in representing the surface water masses in the Weddell Sea. The CFSR and ECCO2 products were not able to represent deep water masses with a neutral density ? 28.40 kg m?3, which was considered the WSBW's upper limit throughout the simulation period. The expected WDW warming was only reproduced by the SODA product, whereas the ECCO2 product was able to represent the trends in the WSDW's hydrographic properties. All the assessed ocean reanalyses were able to represent the decrease in the WSBW's density, except the SODA product in the inner Weddell Sea. Improvements in parameterization may have as much impact on the reanalyses assessed as improvements in horizontal resolution primarily because the Southern Ocean lacks in situ data, and the data that are currently available are summer-biased. The choice of the reanalysis product should be made carefully, taking into account the performance, the parameters of interest, and the type of physical processes to be evaluated

    A Pilot Study with a Novel Setup for Collaborative Play of the Humanoid Robot KASPAR with children with autism

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.This article describes a pilot study in which a novel experimental setup, involving an autonomous humanoid robot, KASPAR, participating in a collaborative, dyadic video game, was implemented and tested with children with autism, all of whom had impairments in playing socially and communicating with others. The children alternated between playing the collaborative video game with a neurotypical adult and playing the same game with the humanoid robot, being exposed to each condition twice. The equipment and experimental setup were designed to observe whether the children would engage in more collaborative behaviours while playing the video game and interacting with the adult than performing the same activities with the humanoid robot. The article describes the development of the experimental setup and its first evaluation in a small-scale exploratory pilot study. The purpose of the study was to gain experience with the operational limits of the robot as well as the dyadic video game, to determine what changes should be made to the systems, and to gain experience with analyzing the data from this study in order to conduct a more extensive evaluation in the future. Based on our observations of the childrens’ experiences in playing the cooperative game, we determined that while the children enjoyed both playing the game and interacting with the robot, the game should be made simpler to play as well as more explicitly collaborative in its mechanics. Also, the robot should be more explicit in its speech as well as more structured in its interactions. Results show that the children found the activity to be more entertaining, appeared more engaged in playing, and displayed better collaborative behaviours with their partners (For the purposes of this article, ‘partner’ refers to the human/robotic agent which interacts with the children with autism. We are not using the term’s other meanings that refer to specific relationships or emotional involvement between two individuals.) in the second sessions of playing with human adults than during their first sessions. One way of explaining these findings is that the children’s intermediary play session with the humanoid robot impacted their subsequent play session with the human adult. However, another longer and more thorough study would have to be conducted in order to better re-interpret these findings. Furthermore, although the children with autism were more interested in and entertained by the robotic partner, the children showed more examples of collaborative play and cooperation while playing with the human adult.Peer reviewe

    Relationship among research collaboration, number of documents and number of citations. A case study in Spanish computer science production in 2000-2009.

    Get PDF
    This paper analyzes the relationship among research collaboration, number of documents and number of citations of computer science research activity. It analyzes the number of documents and citations and how they vary by number of authors. They are also analyzed (according to author set cardinality) under different circumstances, that is, when documents are written in different types of collaboration, when documents are published in different document types, when documents are published in different computer science subdisciplines, and, finally, when documents are published by journals with different impact factor quartiles. To investigate the above relationships, this paper analyzes the publications listed in the Web of Science and produced by active Spanish university professors between 2000 and 2009, working in the computer science field. Analyzing all documents, we show that the highest percentage of documents are published by three authors, whereas single-authored documents account for the lowest percentage. By number of citations, there is no positive association between the author cardinality and citation impact. Statistical tests show that documents written by two authors receive more citations per document and year than documents published by more authors. In contrast, results do not show statistically significant differences between documents published by two authors and one author. The research findings suggest that international collaboration results on average in publications with higher citation rates than national and institutional collaborations. We also find differences regarding citation rates between journals and conferences, across different computer science subdisciplines and journal quartiles as expected. Finally, our impression is that the collaborative level (number of authors per document) will increase in the coming years, and documents published by three or four authors will be the trend in computer science literature

    The Communicability of Graphical Alternatives to Tabular Displays of Statistical Simulation Studies

    Get PDF
    Simulation studies are often used to assess the frequency properties and optimality of statistical methods. They are typically reported in tables, which may contain hundreds of figures to be contrasted over multiple dimensions. To assess the degree to which these tables are fit for purpose, we performed a randomised cross-over experiment in which statisticians were asked to extract information from (i) such a table sourced from the literature and (ii) a graphical adaptation designed by the authors, and were timed and assessed for accuracy. We developed hierarchical models accounting for differences between individuals of different experience levels (under- and post-graduate), within experience levels, and between different table-graph pairs. In our experiment, information could be extracted quicker and, for less experienced participants, more accurately from graphical presentations than tabular displays. We also performed a literature review to assess the prevalence of hard-to-interpret design features in tables of simulation studies in three popular statistics journals, finding that many are presented innumerately. We recommend simulation studies be presented in graphical form

    The Chemodynamics of the Stellar Populations in M31 from APOGEE Integrated Light Spectroscopy

    Full text link
    We present analysis of nearly 1,000 near-infrared, integrated light spectra from APOGEE in the inner \sim7 kpc of M31. We utilize full spectrum fitting with A-LIST simple stellar population spectral templates that represent a population of stars with the same age, [M/H], and [α\alpha/M]. With this, we determine the mean kinematics, metallicities, α\alpha abundances, and ages of the stellar populations of M31's bar, bulge, and inner disk (\sim4-7 kpc). We find a non-axisymmetric velocity field in M31 resulting from the presence of a bar. The bulge of M31 is metal-poor relative to the disk ([M/H] = 0.1490.081+0.067-0.149^{+0.067}_{-0.081} dex), features minima in metallicity on either side of the bar ([M/H] \sim -0.2), and is enhanced in α\alpha abundance ([α\alpha/M] = 0.2810.038+0.0350.281^{+0.035}_{-0.038}). The disk of M31 within \sim7 kpc is enhanced in both metallicity ([M/H] = 0.0230.052+0.050-0.023^{+0.050}_{-0.052}) and α\alpha abundance ([α\alpha/M] = 0.2740.025+0.0200.274^{+0.020}_{-0.025}). Both of these structural components are uniformly old at \simeq 12 Gyr. We find the metallicity increases with distance from the center of M31, with the steepest gradient along the disk major axis (0.043±0.0210.043\pm0.021 dex/kpc). This gradient is the result of changing light contributions from the metal-poor bulge and metal-rich disk. The chemodynamics of stellar populations encodes information about a galaxy's chemical enrichment, star formation history, and merger history, allowing us to discuss new constraints on M31's formation. Our results provide a stepping stone between our understanding of the Milky Way and other external galaxies
    corecore