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Abstract. A full representation of a simulation model encompasses the
behavior of the elements that define the model, the definition of the
probability distributions that define the delays of the events that control
the model, the experimental framework needed for execution, and the
graphical representation of certain model elements. This paper aims to
use specification and description language to achieve a full model rep-
resentation by adding two extensions to the language, which allows for
a complete and unambiguous definition of a discrete simulation model
that is similar to a common discrete operations research simulation tool.
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1 Introduction

A discrete simulation model can be described using formal languages that allow
a clear separation between the definition of the model and its implementation.
However, for discrete simulation (for operations research), the use of formal lan-
guages is desirable but not common. Many of the important discrete simulation
tools do not work with a formal language and often are based on proprietary
syntax and tools. This proprietary representation of the simulation model often
presents a challenging problem for transforming the model to a different imple-
mentation.

This paper aims to use a formal language, the Specification and Description
Language [1], to achieve a complete representation of a simulation model. This
representation encompasses the behavior and structure of the model as well as
the graphical representation of the model execution, which simplifies the model
validation as suggested in [2]. We developed two simple extensions to the 2000
version of the language (SDL-2000), which allow for a complete definition of a
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discrete simulation model that is similar to common discrete operations research
simulation tools; however, we use an unambiguous graphical and standard for-
mal language to improve the model description and reuse, while maintaining the
benefits of a formal language as suggested in [3]. To achieve this objective, it
is necessary to define the behavior of the elements that define the model: the
characterization of the probability distributions that define the delays of the dif-
ferent events that control the model, the experimental framework for execution,
and the structures for model representation.

Operations research simulation tools apply different paradigms to represent
the real world. The discrete-event paradigm includes classical languages, such
as GPSS/H [4,5] and SLAM II [6]. These tools have features that are similar
to Simprocess [7], Arena [8], Simio [9], and Simul8 [10]. The paradigms that
are usually represented with these tools include process-interaction or event-
scheduling [11,12]. Other simulation tools do not exactly follow these paradigms.
For example, Witness [13] constructs processes using push/pull rules for the dif-
ferent elements in the model. This type of software often allows for
if. . . then. . . else rules for the definition of resources and attributes and al-
lows for the use of dynamic link libraries (DLLs) to use specialized code defined
with C++, C# or Visual Basic.

These software tools always allow for a complete definition of the model be-
havior, structure, time and representation.

Similar to the current paper, there are certain programming libraries and
infrastructures that allow for defining a simulation model following a formal lan-
guage. The tools related to DEVS [14] and PetriNets formalisms [15,16] often
represent an excellent alternative to define and implement a simulation model
with the previously mentioned simulation tools. An interesting example of ex-
tending Petri Nets can be reviewed on [17] . For the DEVS tools and infrastruc-
tures, a non-exhaustive list can be reviewed in [18]. For Petri Nets, a similar list
is available in [19].

CD++ [20] and DEVSJAVA [21] are examples of DEVS infrastructures.
CD++ is mainly a toolkit for Discrete-Event modeling and simulation and the
environment is based on the DEVS (Discrete-Event systems Specifications) for-
malism. Currently, a plug-in exists that allows for using a graphical interface
with the Eclipse platform. Figure 1 includes the CD++ plug-in on the eclipse
platform.

One of the strengths of DEVS is that it supports the transfer of models from
one concrete tool to another (due to the use of XML). Several attempts have
been made to define a standard XML representation for DEVS with a complete
and common XML schema [22,23].

Specification and Description Language also has different tools that allow for
the implementation of a simulation model [24,25,26]. These tools allow the gen-
eration of code from the model representation. In this study, we use Specification
and Description Language Parallel Simulator, SDLPS [23,27].
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Fig. 1. CD++ infrastructure on the Eclipse Platform (source: http://cell-devs.
sce.carleton.ca/mediawiki/index.php/ Screenshots)

2 Our System

This study describes a small part of a system from an ongoing project with
the Arbora-Ausonia enterprise. The main elements of this sub-system include a
conveyor and robot.

Fig. 2. An example of a roller conveyor similar to that modeled in the project (Source
Wikipedia)

For confidentiality, we only show the behavior of one of the more common el-
ements in industry, a roller conveyor belt (see Fig. 2). However, for our purposes
this is enough to explain the system. Although it is a common element, the belt is

http://cell-devs.sce.carleton.ca/mediawiki/index.php/
http://cell-devs.sce.carleton.ca/mediawiki/index.php/
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complex enough to justify the use of the extensions to SDL-2000. Additionally,
a conveyor includes the complex behavior of boxes that continuously travel the
length of the unit and requires minimization of the number of events (or signals).

2.1 Used SDL-2000 Extensions

We define models using the Specification and Description Language, but to fully
define a simulation model, as was performed with certain tools presented, it
is not enough to only allow for the definition of the model structure (that is
defined for the different elements in the model) and behavior (that is defined for
each element). A complete definition of the behavior (including the time) and
graphical representation of the simulation model are required.

2.2 Time and Priority Management

For a discrete simulator, a complete definition of the behavior of a model is
needed to describe the time related to the execution of each event that manages
its evolution. Usually each type of event has a specific probability distribution,
which determines when the event is executed. For an event scheduling simulator,
the engine manages the time for all the events and decides where and when these
events must be sent (to other simulation elements, which are the agents in a
Specification and Description Language model).

SDL-2000 has two main structures for time management, Timers and Delay-
ing Channels [1].

Delaying Channels of SDL-2000 were not acceptable for representing the de-
lays in a simulation model because in SDL-2000 there were no existing mecha-
nisms to define the required time to reach the destination with these channels.
The Delaying Chanel represents a delay in the transmission of the signal, but the
probability distribution of this delay cannot be defined. The other mechanism,
Timers, is inadequate, because each different instance of a signal that can travel
in parallel requires the definition of a new Timer. For example, if we need to
send a signal to represent the arrival of new entities to a machine, when a new
arrival is sent to this machine, the Timer is reprogrammed; thus, the signal has
not arrived to its final destination and is reprogrammed. Only one instance of
the signal represented by the Timer can travel through the system. Addition-
ally, Timers cannot represent the priorities. This represents a strong limitation
in order to perform a more readable representation of a dynamic system where
the delays and priorities must be completely defined.

Specification and Description Language time management has been studied
by several groups [28,29]. Specifically, [29] presented an extension that defines
three kinds of transitions; (i) eager (consumed without delay), (ii) lazy (not
urgent) and (iii) delayable (an enabling condition depending on time). For a
discrete simulator, all the transitions can be considered delayable because all the
transitions have a defined time. An eager transition is equivalent to a delayable
transition with the temporal condition set to now=x [29].
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Considering these issues, we implemented extensions of SDL-2000 in SDLPS.
In SDLPS, all the signals carry the parameters with the following elements: (i)
ExecutionTime or delay, the time when the event must be executed. (ii) Priority,
the priority of the event, which is used to eliminate simultaneity of events. (iii)
CreationTime, the time when the event is created. (iv) Id, an identifier of the
event. (v) Time, the clock reading for the process (represents the time related
to the last event that was processed by the process). (vi) Destination, the final
destination (process PId) of the signal.

The parameter event delays or sorts (by priority) the different signals. When
a signal is received, SDLPS uses the event parameter to manage the time and
the priorities of the signal. In SDLPS, we can use extension elements to define
this parameter related to the signal, as shown in Fig. 3. Not all the parameters
of the event structure have to be defined: only those required to fully define the
behavior of the model.

Fig. 3. A delayable signal. This signal requires 2 time units to reach its destination.
Additionally, priorities can be defined to avoid ambiguity when two signals reach the
destination at the same time.

Summarizing this section, to manage time we add to the language:

1. All signals can have a time delay: each signal instance output has a parameter
that defines the time needed to travel to its final destination (i.e., a delay
or the value of the ExecutionTime value minus the current time) and an
input queue schedule parameter defining the priorities with respect to the
other signal instances that arrive at the destination at the same time (i.e.,
the ExecutionTime value). A signal instance is therefore only available in
the destination input port when the current time is greater or equal than
the ExecutionTime.

2. The signals in the input port are scanned in the following order to determine
if there is an enabled signal: ExecutionTime and priority. Signal priority
determines the signal that is processed first. If two signals with the same
ExecutionTime and priority exist, the implementation decides which signal
is executed first (the model does not specify this scenario).

These proposed extensions are included in the SDL-2010 release of the stan-
dard [1].
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2.3 To Represent the Model

To represent the model, we assume that all SDL-2010 agents (system, block and
process) can be represented. Thus, the agent that represents the conveyor has
a real position on the model graphical representation (or layout) and also has
a file that describes its shape. This representation suggests that the definition
of an agent can also have information related to its representation (information
regarding the visual behavior of the agents in a 2D or 3D environment). Our cur-
rent implementation provides this representation in an XML file that describes
the initial position of the agents and a file that describes its shape (see Fig. 4).

<Agent name=’BCinta2 PCinta2’>
<state name=’ROLLING’>

<mesh scale=’1’>default.obj</mesh>
<pos x=’0’ y=’0’ z=’0’ />
<rot x=’0’ y=’0’ z=’0’ />

</state>
</Agent>

Fig. 4. XML representation of an agent with the extensions used to represent the agent
in a virtual reality environment. For agent BCinta2 PCinta2 in the state of ROLLING,
default.obj represents the agent and the initial position and orientation is (0,0,0).

In this case in the shape for the agent BCinta2 PCinta2 (a process) is in a
file (default.obj) and its initial position is 0,0,0 with no rotation.

To represent the model with a 3D (or 2D) animation we define a library that
can be accessed during the execution time using a Procedure Call. In Fig. 5 there
is an example of this Procedure Call called AnimTo.

Fig. 5. The AnimTo procedure allows for defining the animations to represent the
model in a 3D (or 2D) environment

When the simulator executes the procedure it creates a representation in the
3D environment. The parameters of this call are described as follows:

AnimTo( ID, meshPath, delay, x, y, z )
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In this case, the element is identified by the ID identity and moves to (x, y,
z) coordinates at the current execution time plus the time delay. The shape is
defined by a mesh in a WaveFront OBJ format that is stored in the meshPath
path parameter.

A sequential execution of this procedure creates an animation between the
specified points. For the conveyor case, this procedure is used to represent
the elements that the conveyor transports. Thus, to create an animation from
the beginning to the end of the conveyor we must execute:

AnimTo( ID, meshPath, 0, x0, y0, z0 )
AnimTo( ID, meshPath, delay, x, y, z )

Where (x0, y0, z0) is the initial position, (x, y, z) is the last position and delay
is the time to move the distance of the conveyor.

2.4 Conveyor Model

It is not our intention to perform a complete description of the model. Instead,
we detail the behavior of the most complex element (with representation), the
conveyor. The conveyor has different parameters including the speed of the boxes,
defined by the rotation speed of the rollers. Additionally, we can define the
number of boxes that can be carried (this parameter depends on the size of each
box). All the parameters that can be configured by the user are represented on
the SDLPS diagrams using DCL statements. The behavior of the conveyor is
described as follows.

Elements can be added to the beginning of the conveyor. The conveyor con-
tinuously moves the elements to the end of its structure. Because this conveyor
is composed of different cylinders that move the elements (not by a continuous
belt), when the first elements reaches the end of the conveyor (but cannot leave
because the next element is blocked), the other elements can continue moving.
This relationship implies that the conveyor behaves as a buffer that can store
elements until MaxElems boxes is reached (defined in the declarations).

Because we are planning to use SDLPS to interpret and generate the model,
the notation of the declarations and the code for the diagrams is written in ANSI
C language to simplify the DLL needed to perform the execution of the system.
This coding implies that the language we are using is similar to SDL-RT [26]
or C-language binding as in SDL-2010 [1]. We define following terminology to
describe the diagrams.

Entity: the entities are the elements that move through the system using
different facilities to define different processes. Each entity “travels” through
different agents that perform operations on them.

Process: despite having an agent titled process in SDL-2010, a theoretical
process in operations research represents the set of operations that must be
performed to the entities. The definition of these operations is based on the
SDL-2010 process agents.

Event: An event occurs in the simulation model and implies the modification
of select state variables of the model. In our approach, the events are represented
using SDL-2010 signals.
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With these considerations for the model definition, there are two main events
(signals), NewReference (used to indicate that a new element reaches and at-
tempts to enter another element) and TakeReference (the other element, i.e.,
agent, attempts to take one of the elements that was completed in the process).
From these two signals, we can define a model that is similar to a PUSH/PULL
paradigm for a process interaction engine and similar to the simulation tools
that were described previously.

For the conveyor, we only consider the ROLLING state. In this state, we can
receive events, including NewReference, Full, Reroll, TakeReference, Unblock and
Roll. The behavior of these elements is described in Fig. 6, Fig. 7 and Fig. 8.

Figure 6 shows the declarations that contain the elements of the conveyor
that can be modified to define different scenarios. For example, the variable
double MaxElems=10 can be changed to test the difference between using a
short (MaxElems=5 ) or a long (MaxElems=20 ) conveyor.

3 The Implementation and Execution of the Model

The model was implemented with SDLPS software, developed in the InLab FIB
of the Polytechnic University of Catalonia [23,27]. This tool uses SDL-RT (the
code for tasks is defined using C language) and the the extensions to SDL-2000.
Regarding the infrastructure, SDLPS was built with C++ and C languages.
The model code (written in C for the tasks and procedures of the SDL-2000
blocks) are used through a DLL. The SDL-XML model is generated with a
plug-in on Microsoft Visio®. This coding implies that the model can be mainly
validated and verified by reviewing the graphic diagrams on Microsoft Visio®.
This property dramatically simplifies the interaction between the different parts
involved in the project.

SDL-2010 does not define the ordering of events when two events with the
same ExecutionTime have the same priority. This situation must be defined in
the model or by the simulation engine. SDLPS eliminates this ambiguity by
storing these events in a FIFO queue.

From Fig. 9, the simulator shows the model diagrams that will be simulated.
The system uses an XML representation of the model that is obtained from
Microsoft Visio® with the SanDriLa© plug-in.

Because we use this infrastructure, no specific implementation was performed
for this project, simplifying the verification process required for simulation
projects [30].

Figure 10 shows the steps that are simplified (red in the online paper/ grey
in the printed paper) by this methodology that are needed for a simulation.

The obtained results from the model emulation trace can be presented in Mi-
crosoft Excel® or SDLPSEye, which is capable of representing information in a
3D environment (for the representation events described in the previous section).
All agents can have unique representations, and due to the time extensions, we
can determine the movement of the simulation entities.
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Fig. 6. PCinta for the ROLLING state (1/3). This figure shows how the process is
instantiated. The time4position variable is defined from the START symbol and is the
time that is required for each of the pieces to reach a specific position on the conveyor.
From the “rolling” state, we can receive a NewReference signal. We then analyze the
number of elements that are in the conveyor. If this number is equal to the conveyor
capacity, the conveyor sends the “Full” signal to the previous agent. Otherwise, the
conveyor processes the element (sends the TakeReference signal to the previous agent).
Then, the program determines if the animation must be completed from the beginning
or if this element is connected to another conveyor AnimPrev value. In this example,
the AnimPrev value is 0, such that the previous element is not a conveyor.
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Fig. 7. PCinta for the ROLLING state (2/3). When a conveyor receives a TakeRefer-
ence signal, the NewReference is accepted by the next agent. Thus, after receiving this
signal, we can decrease the number of elements of our agent and unblock the previous
agent (in case that agent was blocked by our agent). We also can observe the behav-
ior of the conveyor when it receives a Reroll signal. This signal is sent by the agent
(self-signal) and is used to start the motion of the conveyor after a blocking occurs.
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Fig. 8. PCinta for the ROLLING state (3/3). A conveyor receives an Unblock signal
when we need to unblock the previous agent. To unblock the previous agent, we simulate
receiving a NewReference signal. We also observe the formalization of the Roll signal.
This signal is used to simulate the traveling time of the elements along the conveyor.
When an element attempts to travel from the current position to position number 5,
we send a Roll signal to the self conveyor with a delay, which represents the time for
traveling from one position to the next.
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Fig. 10. Simplified version of the modeling process [30]

3.1 The Model Eyes: SDLPSEye

The representation of the model is stored in a trace file. This file contains the
representation events from all the simulations. The events can be generated by
the AnimTo procedure or by changing any process of the model. For the lat-
ter, the event must be completed with a representation of every possible state
of the given process. Figure 11 is an example with a defined state representa-
tion of every agent. In this case, the agent BRobot PRobot has 3 states (IDLE,
BLOCKED and WORKING). Figure 12 is an example of a representation of an
event sequence. In this case, there are two representation events types, which
include EYE SetState and EYE AnimTo.

Figure 13 and Fig. 14 represent the model that was obtained from the descrip-
tion of the SDL diagrams. The boxes are the mesh elements (the representation
of the agent) defined on the extensions.

4 Concluding Remarks

Despite that the obtained results from the simulation model can be used for a de-
cision process in industry, the Specification and Description Language becomes
an excellent language to fully describe the behavior of the enterprise elements,
due the added time and representation capabilities. As we see in the introduction
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Fig. 11. XML file defining the representation of the model

Fig. 12. A trace of the representation, representing the complete behavior of the model
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Fig. 13. The conveyor contains three boxes. The two boxes at the end are waiting for
service.

Fig. 14. The conveyor is full and blocking the box generator (in red). In this exam-
ple, 4 blocks are represented. From left to right, the first, third and fourth elements
have the simplest representation, consisting of a color representation of each state.
For the conveyor block, a more accurate representation is presented using the AnimTo
procedure.

there are certain formal languages, programming libraries and infrastructures
that allow defining a simulation model. However, any of these languages allows
the definition of the model representation. To achieve this it is needed to use
proprietary infrastructures and tools. This obviously is far from the objective to
achieve a complete and formal representation of a simulation model independent
of the tool or infrastructure used to finally perform the implementation.

Thus, once the system is fully described, a client can modify the structure
of the model using only Microsoft Visio® SDL-2010 diagrams with the San-
DriLa [31] plug-in. Additionally, because the more important parameters of the
model are defined in the declarations and can be modified directly in the SDLPS
infrastructure, simple modifications (new parameterizations) of the model are
not time intensive. Thus, in industry, the managers can validate the accuracy of
certain proposed alternatives using common tools such as Microsoft Visio® .

Additionally, this tool can validate the accuracy of several of the proposed
solutions. Thus, the diagrams that represent the tacit and explicit knowledge of
the industry can be validated, allowing for the representation and validation of
these types of knowledge.

We are currently continuing with the project implementation in industry and
installing the system for the clients so they can modify and define their own
models. The main elements of the system can be predefined with SDL-2010
blocks that implement a library, so that several elements can be reused.
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As shown in this study, specification and description language can be used
in operations research to fully represent discrete simulation models with tem-
poral extensions and a library to represent the basic operations to render a 3D
environment.

Because the validation of the model is performed in the SDL-2010 representa-
tion of the model, non-simulation specialists that are experts in system behavior
can understand the model’s behavior. Thus, all the actors involved in the project
can participate in the model validation. Thus, SDL-2010 diagrams can be used
to represent the tacit knowledge that expresses the behavior of the complex
interactions between several actors in industry.
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