24 research outputs found
Short-Term Hurricane Impacts on a Neotropical Community of Marked Birds and Implications for Early-Stage Community Resilience
Populations in fragmented ecosystems risk extirpation through natural disasters, which must be endured rather than avoided. Managing communities for resilience is thus critical, but details are sketchy about the capacity for resilience and its associated properties in vertebrate communities. We studied short-term resilience in a community of individually marked birds, following this community through the catastrophic destruction of its forest habitat by Hurricane Iris in Belize, Central America. We sampled for 58 d immediately before the storm, 28 d beginning 11 d after Hurricane Iris, and for 69 d approximately one year later. Our data showed that the initial capacity for resilience was strong. Many banded individuals remained after the storm, although lower post-hurricane recapture rates revealed increased turnover among individuals. Changes occurred in community dynamics and in abundances among species and guilds. Survivors and immigrants both were critical components of resilience, but in a heterogeneous, species-specific manner. Delayed effects, including higher fat storage and increased species losses, were evident one year later
Cascading effects of moose (Alces alces) management on birds
Large herbivores often have key functions in their ecosystems, and may change ecosystem processes with cascading effects on other animals. The mechanisms often involve relocations of resources of various kinds, including reduction in resource availability following large herbivore foraging and increase in resources from animal excreta. As large herbivore populations in Europe generally are intensely managed, management activities may interact with the activities of the herbivores themselves in the effect on other ecosystem components. We investigated the effects of moose (Alces alces) winter browsing, together with the effect of net nutrient input via supplementary winter feeding of moose on functional composition and species richness of birds in a boreal forest. Supplementary feeding stations for moose had a net zero effect on bird species richness and abundance, because negative effects of moose browsing were balanced by positive effects of nutrient input. Sites with a similar browsing intensity as at feeding stations but without nutrient input had lower abundance and species richness than feeding stations. Functional groups of bird species showed differing responses: Birds nesting at or below browsing height were negatively affected by moose browsing, whereas species nesting above the browsing zone were positively affected by moose browsing. Insect eating species responded negatively to moose browsing on birch but positively to nutrient input at feeding stations, whereas seed eating species responded positively to birch browsing and negatively to feeding stations. This study showed that both high levels of cervid activity and human management interventions influenced the bird community
Freshwater phytoplankton diversity: models, drivers and implications for ecosystem properties
Our understanding on phytoplankton diversity has largely been progressing since the publication of Hutchinson on the paradox of the plankton. In this paper, we summarise some major steps in phytoplankton ecology in the context of mechanisms underlying phytoplankton diversity. Here, we provide a framework for phytoplankton community assembly and an overview of measures on taxonomic and functional diversity. We show how ecological theories on species competition together with modelling approaches and laboratory experiments helped understand species coexistence and maintenance of diversity in phytoplankton. The non-equilibrium nature of phytoplankton and the role of disturbances in shaping diversity are also discussed. Furthermore, we discuss the role of water body size, productivity of habitats and temperature on phytoplankton species richness, and how diversity may affect the functioning of lake ecosystems. At last, we give an insight into molecular tools that have emerged in the last decades and argue how it has broadened our perspective on microbial diversity. Besides historical backgrounds, some critical comments have also been mad
Genomes of ubiquitous marine and hypersaline Hydrogenovibrio, Thiomicrorhabdus, and Thiomicrospira spp. encode a diversity of mechanisms to sustain chemolithoautotrophy in heterogeneous environments.
Chemolithoautotrophic bacteria from the genera Hydrogenovibrio, Thiomicrorhabdus, and Thiomicrospira are common, sometimes dominant, isolates from sulfidic habitats including hydrothermal vents, soda and salt lakes, and marine sediments. Their genome sequences confirm their membership in a deeply branching clade of the Gammaproteobacteria. Several adaptations to heterogeneous habitats are apparent. Their genomes include large numbers of genes for sensing and responding to their environment (EAL- and GGDEF-domain proteins, and methyl-accepting chemotaxis proteins) despite their small sizes (2.1 - 3.1 Mbp). An array of sulfur-oxidizing complexes are encoded, likely to facilitate these organisms' use of multiple forms of reduced sulfur as electron donors. Hydrogenase genes are present in some taxa, including group 1d and 2b hydrogenases in Hydrogenovibrio marinus and H. thermophilus MA2-6, acquired via horizontal gene transfer. In addition to high-affinity cbb3cytochrome c oxidase, some also encode cytochrome bd-type quinol oxidase or ba3-type cytochrome c oxidase, which could facilitate growth under different oxygen tensions, or maintain redox balance. Carboxysome operons are present in most, with genes downstream encoding transporters from four evolutionarily distinct families, which may act with the carboxysomes to form CO2concentrating mechanisms. These adaptations to habitat variability likely contribute to the cosmopolitan distribution of these organisms. This article is protected by copyright. All rights reserved
Integrative modelling reveals mechanisms linking productivity and plant species richness
How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology1. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns2, 3. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models4, 5, 6, 7. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis8, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems