4,614 research outputs found

    Hybrid FPGA: Architecture and Interface

    No full text
    Hybrid FPGAs (Field Programmable Gate Arrays) are composed of general-purpose logic resources with different granularities, together with domain-specific coarse-grained units. This thesis proposes a novel hybrid FPGA architecture with embedded coarse-grained Floating Point Units (FPUs) to improve the floating point capability of FPGAs. Based on the proposed hybrid FPGA architecture, we examine three aspects to optimise the speed and area for domain-specific applications. First, we examine the interface between large coarse-grained embedded blocks (EBs) and fine-grained elements in hybrid FPGAs. The interface includes parameters for varying: (1) aspect ratio of EBs, (2) position of the EBs in the FPGA, (3) I/O pins arrangement of EBs, (4) interconnect flexibility of EBs, and (5) location of additional embedded elements such as memory. Second, we examine the interconnect structure for hybrid FPGAs. We investigate how large and highdensity EBs affect the routing demand for hybrid FPGAs over a set of domain-specific applications. We then propose three routing optimisation methods to meet the additional routing demand introduced by large EBs: (1) identifying the best separation distance between EBs, (2) adding routing switches on EBs to increase routing flexibility, and (3) introducing wider channel width near the edge of EBs. We study and compare the trade-offs in delay, area and routability of these three optimisation methods. Finally, we employ common subgraph extraction to determine the number of floating point adders/subtractors, multipliers and wordblocks in the FPUs. The wordblocks include registers and can implement fixed point operations. We study the area, speed and utilisation trade-offs of the selected FPU subgraphs in a set of floating point benchmark circuits. We develop an optimised coarse-grained FPU, taking into account both architectural and system-level issues. Furthermore, we investigate the trade-offs between granularities and performance by composing small FPUs into a large FPU. The results of this thesis would help design a domain-specific hybrid FPGA to meet user requirements, by optimising for speed, area or a combination of speed and area

    Exact Pseudofermion Action for Monte Carlo Simulation of Domain-Wall Fermion

    Get PDF
    We present an exact pseudofermion action for hybrid Monte Carlo simulation (HMC) of one-flavor domain-wall fermion (DWF), with the effective 4-dimensional Dirac operator equal to the optimal rational approximation of the overlap-Dirac operator with kernel H=cHw(1+dγ5Hw)1 H = c H_w (1 + d \gamma_5 H_w)^{-1} , where c c and d d are constants. Using this exact pseudofermion action, we perform HMC of one-flavor QCD, and compare its characteristics with the widely used rational hybrid Monte Carlo algorithm (RHMC). Moreover, to demonstrate the practicality of the exact one-flavor algorithm (EOFA), we perform the first dynamical simulation of the (1+1)-flavors QCD with DWF.Comment: 13 pages, 4 figures, v2: Simulation of (1+1)-flavors QCD with DWF, and references added. To appear in Phys. Lett.

    Non-existence of multiple-black-hole solutions close to Kerr-Newman

    Get PDF
    We show that a stationary asymptotically flat electro-vacuum solution of Einstein's equations that is everywhere locally "almost isometric" to a Kerr-Newman solution cannot admit more than one event horizon. Axial symmetry is not assumed. In particular this implies that the assumption of a single event horizon in Alexakis-Ionescu-Klainerman's proof of perturbative uniqueness of Kerr black holes is in fact unnecessary.Comment: Version 2: improved presentation; no changes to the result. Version 3: corrected an oversight in the historical review. Version 4: version accepted for publicatio

    On the sustainability of currency boards : evidence from Argentina and Hong Kong : [Version: September 2008]

    Get PDF
    This paper examines the sustainability of the currency board arrangements in Argentina and Hong Kong. We employ a Markov switching model with two regimes to infer the exchange rate pressure due to economic fundamentals and market expectations. The empirical results suggest that economic fundamentals and expectations are key determinants of a currency board’s sustainability. We also show that the government’s credibility played a more important role in Argentina than in Hong Kong. The trade surplus, real exchange rate and inflation rate were more important drivers of the sustainability of the Hong Kong currency board

    Effective osimertinib treatment in a patient with discordant T790 M mutation detection between liquid biopsy and tissue biopsy.

    Get PDF
    BACKGROUND:We report the successful treatment of the patient with osimertinib 80 mg/day following disease progression and a discordance in the detection of a mechanism of resistance epithelial growth factor receptor (EGFR) T790 M between liquid biopsy and tissue biopsy methods. CASE PRESENTATION:A 57-year-old Hispanic male patient initially diagnosed with an EGFR 19 deletion positive lung adenocarcinoma and clinically responded to initial erlotinib treatment. The patient subsequently progressed on erlotinib 150 mg/day and repeat biopsies both tissue and liquid were sent for next-generation sequencing (NGS). A T790 M EGFR mutation was detected in the blood sample using a liquid biopsy technique, but the tissue biopsy failed to show a T790 M mutation in a newly biopsied tissue sample. He was then successfully treated with osimertinib 80 mg/day, has clinically and radiologically responded, and remains on osimertinib treatment after 10 months. CONCLUSIONS:Second-line osimertinib treatment, when administered at 80 mg/day, is both well tolerated and efficacious in a patient with previously erlotinib treated lung adenocarcinoma and a T790 M mutation detected by liquid biopsy

    Investigation of solar cells and phototransistors based on hybrid copper (I) thiocyanate: methanofullerene materials

    Get PDF
    The combination of organic and inorganic semiconductors offers a route to the development of solar cells and other optoelectronic devices that combine flexibility, high efficiency and high stability. In this thesis, we have investigated the hybrid organic: inorganic system, copper (I) thiocyanate (CuSCN): phenyl C71 butyric methyl acid ester (PC70BM). We have shown that ~100 nm long CuSCN nanowires can be grown within PC70BM when a layer of PC70BM containing dilute CuSCN is deposited on top of a CuSCN layer on a heated substrate. Photovoltaic devices made from these nanowire-containing layers perform significantly better than devices made from CuSCN/PC70BM bilayers because the nanowires improve charge collection efficiency. The initial device based on a nanowire-containing CuSCN:PC70BM structure, the device shows ~5% power conversion efficiency. We show that these CuSCN NWs form well when the substrate temperature is about 115oC. We then discovered that by spin-coating interlayers with a CuSCN rich precursor solution between the compact CuSCN layer and CuSCN:PC70BM photoactive mixed layer, the power conversion efficiency could be further improved to nearly 6% power conversion efficiency. Finally, we measured the carrier mobility of CuSCN:PC70BM layer using field-effect transistors. We find the carrier mobility values for holes and electrons to be on the order of 10-3 to 10-2 cm2/Vs, similar to values for typical organic semiconducting materials. We have also characterized the same device as a phototransistor by illuminating the active area with light in the visible range. This work has demonstrated the concept of the initial application of CuSCN nanowires, which has never been reported in any organic: inorganic mixed layer. CuSCN nanowires could be a new approach for optimizing charge separation in light-absorbing acceptor systems.Open Acces
    corecore