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We present an exact pseudofermion action for hybrid Monte Carlo simulation (HMC) of one-flavor 
domain-wall fermion (DWF), with the effective 4-dimensional Dirac operator equal to the optimal rational 
approximation of the overlap-Dirac operator with kernel H = cH w (1 + dγ5 H w )−1, where c and d are 
constants. Using this exact pseudofermion action, we perform HMC of one-flavor QCD, and compare 
its characteristics with the widely used rational hybrid Monte Carlo algorithm (RHMC). Moreover, to 
demonstrate the practicality of the exact one-flavor algorithm (EOFA), we perform the first dynamical 
simulation of the (1 + 1)-flavors QCD with DWF.
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Quantum Chromodynamics (QCD) is the fundamental theory for 
the interaction between quarks and gluons. It provides the theo-
retical framework to understand the nuclear force/energy from the 
first principles. Moreover, QCD plays an important role in the evo-
lution of the early universe, from the quark–gluon phase to the 
hadron phase. Since quarks are relativistic fermions, they possess 
the chiral symmetry in the massless limit. At zero temperature, 
the chiral symmetry [SUL(N f ) × SUR(N f )] of N f massless quarks 
is spontaneously broken to SUV (N f ), due to the strong interaction 
between quarks and gluons in the vacuum. This gives the (nearly) 
massless Goldstone bosons (pions) and their specific interactions. 
To investigate the spontaneous chiral symmetry breaking as well 
as hadron physics from the first principles of QCD, it requires non-
perturbative methods. So far, lattice QCD is the most promising ap-
proach, discretizing the continuum space–time on a 4-dimensional 
lattice [1], and computing physical observables by Monte Carlo 
simulation [2]. However, in lattice QCD, formulating lattice fermion 
with exact chiral symmetry at finite lattice spacing is rather non-
trivial. This is realized through domain-wall fermions (DWF) on 
the 5-dimensional lattice [3] and the overlap-Dirac fermion on the 
4-dimensional lattice [4,5].

Consider the overlap-Dirac operator with bare quark mass mq ,
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D = mq + (1 − rmq)

2r

[
1 + γ5 H

(
H2)−1/2]

,

r = 1/
[
2m0(1 − dm0)

]
, m0 ∈ (0,2). (1)

Its eigenmodes consist of complex conjugate pairs, and (for topo-
logically non-trivial gauge field) real eigenmodes with definite 
chiralities at mq and 1/r satisfying the chirality sum rule [6], 
n+ − n− + N+ − N− = 0, where n± (N±) denote the number of 
eigenmodes at mq (1/r) with ± chirality. Empirically, the real 
eigenmodes always satisfy either (n− = N+ = 0, n+ = N−) or (n+ =
N− = 0, n− = N+). Thus, one can write

det D =
{

(rmq)
n+ detH2− = (rmq)

−n+ detH2+, n+ ≥ 0,

(rmq)
n− detH2+ = (rmq)

−n− detH2−, n− ≥ 0,

where H2± = P±(D† D), and P± = (1 ± γ5)/2. It follows that the 
pseudofermion action for one-flavor overlap fermion can be ex-
pressed in terms of n± and H2± (Hermitian and positive-definite), 
thus is amenable to HMC [7], as studied in Refs. [8–10]. How-
ever, this approach requires the computation of the change of n±
at each step of the molecular dynamics in HMC, which is pro-
hibitively expensive for large lattices (e.g., 163 × 32). Moreover, 
the discontinuity of the fermion determinant at the topological 
boundary highly suppresses the crossing rate between different 
topological sectors, thus renders HMC failing to sample all topo-
logical sectors ergodically. These difficulties can be circumvented 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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as follows. Firstly, as shown in Ref. [11], any positive Dirac oper-
ator satisfying γ5-hermiticity (γ5 Dγ5 = D†) possesses a positive-
definite pseudofermion action for one-flavor fermion, without ex-
plicit dependence on n± . Secondly, the step function of the fermion 
determinant at the topological boundary can be smoothed out by 
using DWF with finite Ns (e.g., Ns = 16), then the HMC on the 
5-dimensional lattice can sample all topological sectors ergodically 
and also keep the chiral symmetry at a good precision (e.g., the 
residual mass less than 5% of the bare quark mass). This has been 
demonstrated for 2-flavors QCD in Ref. [12], and for (1 + 1)-flavors 
QCD in this paper.

The construction of positive-definite pseudofermion action for 
HMC of one-flavor DWF has been given in Ref. [11], for the conven-
tional DWF with the effective 4-dimensional Dirac operator equal 
to the polar approximation of the overlap-Dirac operator with 
kernel H = γ5 D w(2 + D w)−1, and for the optimal domain-wall 
fermion (ODWF) [13] with the effective 4-dimensional Dirac oper-
ator equal to the optimal rational approximation of the overlap-
Dirac operator with kernel H w = γ5 D w . In this paper, we gen-
eralize the construction to ODWF with the overlap kernel H =
cH w(1 + dγ5 H w)−1, where c and d are constants. We note that 
this kernel is the most general form one can have for ODWF, as 
shown in Ref. [14]. Using the exact pseudofermion action, we per-
form HMC of one-flavor QCD, and compare its characteristics with 
those of RHMC [15], the most widely used algorithm for han-
dling one-flavor fermion in lattice QCD. Moreover, to demonstrate 
the practicality of the exact one-flavor algorithm (EOFA), we per-
form the first dynamical simulation of the (1 +1)-flavors QCD with 
ODWF.

In general, the 5-dimensional lattice Dirac operator of all vari-
ants of DWF [13,16–18] can be written as [14]
[
D(m)

]
xx′;ss′ = (ρs D w + 1)xx′δss′ + (σs D w − 1)xx′ Lss′ , (2)

where x and x′ denote the lattice sites on the 4-dimensional lat-
tice, s and s′ the indices in the fifth dimension, and the Dirac and 
color indices have been suppressed. Here D w is the standard Wil-
son Dirac operator plus a negative parameter −m0 (0 < m0 < 2),

(D w)xx′ =
4∑

μ=1

γμ(tμ)xx′ + W xx′ − m0δx,x′ ,

(tμ)xx′ = 1

2

[
Uμ(x)δx+μ̂,x′ − U †

μ

(
x′)δx−μ̂,x′

]
,

W xx′ = 4δx,x′ − 1

2

4∑
μ=1

[
Uμ(x)δx+μ̂,x′ + U †

μ

(
x′)δx−μ̂,x′

]
,

where Uμ(x) denotes the link variable pointing from x to x + μ̂. 
The operator L is independent of the gauge field, and it can be 
written as

L = P+L+ + P−L−, P± = (1 ± γ5)/2,

and

(L+)ss′ = (L−)s′s =
{ −mδNs,s′ , s = 1,

δs−1,s′ , 1 < s ≤ Ns,

where Ns is the number of sites in the fifth dimension, m ≡ rmq , 
mq is the bare quark mass, and r = 1/[2m0(1 −dm0)]. Note that the 
matrices L± satisfy LT± = L∓ , and R5 L±R5 = L∓ , where R5 is the 
reflection operator in the fifth dimension, with elements (R5)ss′ =
δs′,Ns+1−s . Thus R5L± is real and symmetric.

Different ways of assigning the values of ρs and σs along the 
fifth dimension give all variants of DWF. In general, we write 
ρs = cωs +d, and σs = cωs −d, where c and d are constants. For the 
conventional DWF with the Shamir kernel [16], c = d = 1/2, and 
ωs = 1, ∀s. For the Borici DWF [17], c = 1, d = 0, and ωs = 1, ∀s. 
For the Möbius DWF [18], ωs = 1, ∀s. For the optimal DWF, the 
weights {ωs} are fixed according to the formula derived in [13], 
then its effective 4-dimensional Dirac operator is exactly equal to 
the Zolotarev optimal rational approximation [19] of the overlap-
Dirac operator (1).

Since the matrices L and ω = diag(ω1, . . . , ωNs ) are indepen-
dent of the gauge field, we can drop the factor [d + cω(1 + L)(1 −
L)−1] from the DWF operator (2) and obtain the re-scaled DWF 
operator for HMC,

DT (m) ≡ D w + P+M+(m) + P−M−(m), (3)

where

M±(m) = ω−1/2[ω−1d + cN±(m)
]−1

ω−1/2, (4)

N±(m) = [
1 + L±(m)

][
1 − L±(m)

]−1
. (5)

Here the dependence on m ≡ rmq has been shown explicitly in L± , 
M± , and N± . Using the relation

N±(m) = N±(0) − 2m

1 + m
uuT , uT ≡ (1,1, . . . ,1),

and the Sherman–Morrison formula, we obtain

[
ω−1d + cN±(m)

]−1 =
[

A± − 2cm

1 + m
uuT

]−1

= A−1± + 2cm

1 + m − 2cmλ±
A−1± uuT A−1± , (6)

where

A± ≡ ω−1d + cN±(0),

λ± ≡ uT A−1± u.

Now we use ω which is invariant under R5, i.e., R5ωR5 = ω, define 
v± ≡ R5 A−1± u, and put (6) into (4), then we obtain

M±(m) = ω−1/2 A−1± ω−1/2

+ 2cm

1 + m − 2cmλ±
R5ω

−1/2 v±v T±ω−1/2. (7)

We note that the reflection-symmetric ω is different from the ω
given in Ref. [13], and the details will be given in a forthcoming 
paper.

Since A−1± is an upper/lower triangular matrix, we can solve v±
exactly with the following recursion relation,

(v+)Ns = (v−)1 = αNs , (8)

(v+)s = (v−)Ns−s+1 = αsβs+1(v+)s+1, s = Ns − 1, . . . ,1, (9)

where αs ≡ 1/(ω−1
s d + c) and βs ≡ ω−1

s d − c. Then we obtain

λ− = λ+ = uT A−1+ u = uT R5 A−1+ u = uT v+
=

∑
s

(v+)s =
∑

s

αs Q s ≡ λ, (10)

where Q s ≡ αs+1βs+1 · · ·αNsβNs .
In the following, without loss of generality, we use the Dirac 

matrices in the chiral representation,

γμ =
(

0 σμ

σ
†
μ 0

)
, σμ = (
σ , i I),

γ5 = γ1γ2γ3γ4 =
(

I 0
0 −I

)
,

where 
σ are the Pauli matrices. Next, we define
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DT (m1,m2) ≡
(

W − m0 + M+(m1) σ · t
−(σ · t)† W − m0 + M−(m2)

)
,

(11)

which is equal to DT (m) [Eq. (3)] when m1 = m2 = m. After in-
corporating the contribution of the Pauli–Villars fields, the fermion 
determinant of the DWF becomes det DT (m)/ det DT (1). Using the 
Schur decompositions, we obtain

det DT (1)

det DT (m)
= det[W − m0 + M−(1)]2 · det H+(1)

det[W − m0 + M+(m)]2 · det H−(m)
, (12)

where

H+(m1,m2) ≡ R5

[
W − m0 + M+(m1)

+ (σ · t)
1

W − m0 + M−(m2)
(σ · t)†

]
, (13)

H−(m1,m2) ≡ R5

[
W − m0 + M−(m2)

+ (σ · t)† 1

W − m0 + M+(m1)
(σ · t)

]
, (14)

which become H+(m) and H−(m) when m1 = m2 = m. Since 
R5ωR5 = ω, this implies that (R5 M±)† = R5M± and (M±R5)

† =
M±R5, thus H± is Hermitian. Applying the Schur decompositions 
to DT (m, 1), we obtain

det[W − m0 + M−(1)]2

det[W − m0 + M+(m)]2
= det[H−(m) + 
−(m)]

det[H+(1) − 
+(m)] ,


±(m) ≡ R5
[
M±(1) − M±(m)

]
. (15)

Using (7), we obtain


±(m) = kω−1/2 v±v T±ω−1/2 = kΩ±Ω T±, (16)

where

k ≡ c

1 − cλ

1 − m

(1 + m − 2cmλ)
, (17)

(Ω±)s,s′ ≡ ω
−1/2
s (v±)sδs′,1. (18)

Substituting (15) into (12), we immediately have

det DT (1)

det DT (m)
= det[H−(m) + 
−(m)]

det[H+(1) − 
+(m)]
det H+(1)

det H−(m)

= det H1(m) · det H2(m), (19)

where

H1(m) ≡ I + kΩ T−
1

H−(m)
Ω−, (20)

H2(m) ≡ I + kΩ T+
1

H+(1) − 
+(m)
Ω+. (21)

Here H1 and H2 are Hermitian operators (with color and 2-spinor 
indices) on the 4-dimensional space, and the formula det(I +
AB) = det(I + B A) has been used in the last equality of (19). It 
is trivial to assert that [W − m0 + M±(m)]−1 (in Eqs. (13)–(14)) 
is well-defined for m > 0, and H1 and H2 are positive-definite, as 
shown in Ref. [11].

From (19), the pseudofermion action for one-flavor DWF reads

S pf = φ
†
1 H1(m)φ1 + φ

†
2 H2(m)φ2, (22)

where φ1 and φ2 are pseudofermion fields on the 4-dimensional 
lattice, each of two spinor components. However, the operators 
H1(m) and H2(m) are not practical since each involves the in-
verse of some matrix which contains the inverse of another matrix. 
Again, using the Schur decompositions, we finally have

S pf = (
0 φ

†
1

)[
I − kΩ T−

1

HT (m)
Ω−

](
0
φ1

)

+ (
φ

†
2 0

)[
I + kΩ T+

1

HT (1) − 
+(m)P+
Ω+

](
φ2
0

)
,

(23)

where HT (m) ≡ γ5 R5 DT (m) is a Hermitian operator. This is the 
main result of this paper.

To generate φ1 and φ2 from Gaussian noise fields η1 and η2, 
we use Zolotarev optimal rational approximation for the inverse 
square root of H1(m) and H2(m),

φ1 = 1√
H1

η1 =
N p∑
l=1

bl

dl + H1
η1

=
N p∑
l=1

blel
1

I + elkΩ T−[H−(m)]−1Ω−
η1,

φ2 = 1√
H2

η2 =
N p∑
l=1

bl

dl + H2
η2

=
N p∑
l=1

blel
1

I + elkΩ T+[H+(1) − 
+(m)]−1Ω+
η2,

where el ≡ 1/(1 + dl), and Np is the number of poles in the 
Zolotarev approximation. Further simplifications can be obtained 
using the Schur decomposition, and the final results are

(
ξ1
φ1

)
=

N p∑
l=1

[
blel I + ble

2
l kΩ T−

1

HT (m) − el
−(m)P−
Ω−

](
0
η1

)
,

(
φ2
ξ2

)
=

N p∑
l=1

[
blel I − ble

2
l kΩ T+

1

HT (1) − dlel
+(m)P+
Ω+

](
η2
0

)

where ξ1 and ξ2 are irrelevant fields. Thus φ1 and φ2 can be solved 
by the conjugate gradient. Finally we use the accept-reject algo-
rithm to make sure that φ1 and φ2 give the pseudofermion action 
S pf (23) such that the probability distribution exp(−S pf ) satisfies 
exactly the Gaussian distribution exp(−η

†
1η1 − η

†
2η2).

In the following, we compare EOFA with RHMC. For the mem-
ory requirement, it is straightforward to obtain the following for-
mula for the ratio of the memory consumption of these two algo-
rithms [20]

MRHMC

MEOFA
= 20 + 3(3 + 2Np)Ns

32 + 10.5Ns
,

where Np is the number of poles used in the rational approxima-
tion of RHMC, and Ns is the extent in the fifth dimension. For 
Np = 12 and Ns = 16, the ratio is 6.58 for any 4D lattices. In 
other words, if EOFA requires 12 GB to perform HMC of lattice 
QCD with DWF on the 323 × 64 × 16 lattice, then RHMC with 12 
poles needs at least 79 GB to perform the simulation. Obviously, 
the memory-saving feature of EOFA is crucial for large-scale simu-
lations of lattice QCD with GPUs, in view of each GPU having enor-
mous floating-point computing power but limited device memory. 
For example, using EOFA, two GPUs (each of 6 GB device mem-
ory, e.g., Nvidia GTX-TITAN) working together with OpenMP/MPI 
is capable to simulate lattice QCD with (u, d, s, c) DWF quarks on 
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Fig. 1. The change of Hamiltonian 
H versus the trajectory in the HMC of one-flavor QCD with the conventional DWF, for (a) EOFA, and (b) RHMC respectively. The line 
connecting the data points is only for guiding the eyes.

Fig. 2. The maximum forces of the gauge field, heavy fermion field, and light fermion field versus the trajectory in the HMC of one-flavor QCD with the conventional DWF, 
for (a) EOFA, and (b) RHMC respectively.
the 323 × 64 × 16 lattice (attaining sustained 780 Gflops for two 
GTX-TITANs).

To compare the HMC characteristics of EOFA and RHMC, we 
perform HMC of one-flavor QCD on the 83 × 16 lattice, with 
the conventional DWF at Ns = 16 and m0 = 1.8, sea-quark mass 
mseaa = 0.01, and the Wilson plaquette gauge action at β = 5.95. 
In the molecular dynamics, we use the Omelyan integrator [21], 
auxillary heavy fermion field [22] with mH a = 0.1, and multiple-
time scale method [23]. The pseudofermion action for Monte Carlo 
simulation of one-flavor QCD with RHMC is

S
N f =1
pf = φ†(C †

1C1
)1/4(

CC †)−1/2(
C †

1C1
)1/4

φ,

where C is defined in Eq. (13) of Ref. [24], and the number of 
poles used in the optimal rational approximation of (CC †)−1/2 and 
(C †

1C1)
1/4 is Np = 12. In Fig. 1, we plot the change of Hamil-

tonian 
H of each trajectory after thermalization, for EOFA and 
RHMC respectively. In both cases, 
H is quite smooth, with-
out spikes in all trajectories. Moreover, the measured values of 
〈exp(−
H)〉 are: 0.9999(16) for EOFA, and 1.0074(18) for RHMC, 
both in good agreement with the condition 〈exp(−
H)〉 = 1 which 
follows from the area-preserving property of the HMC. In Fig. 2, 
we plot the maximum force (averaged over all links) among all 
momentum updates in each trajectory, for the gauge field, the 
heavy fermion field, and the light fermion field respectively. For 
both EOFA and RHMC, the forces all behave smoothly for all tra-
jectories. However, the fermion forces of EOFA are substantially 
smaller than their counterparts in RHMC. Using one core of In-
tel i7-3820 CPU@3.60 GHz, the average time for generating one 
HMC trajectory after thermalization is 6644(43) seconds for EOFA, 
versus 6629(24) seconds for RHMC. Taking into account of the ac-
ceptance rate 0.987(7) for EOFA, and 0.997(3) for RHMC, both EOFA 
and RHMC have compatible efficiencies. Further details of the com-
parison will be given in Ref. [20].

To demonstrate the practicality of EOFA, we perform the first 
dynamical simulation of the (1 + 1)-flavors QCD with DWF, which 
also provides gauge ensembles for studying the isospin symme-
try breaking effects in the hadron spectrum as well as other 
physical quantities. In the following, we outline the salient fea-
tures of our simulation. We generate the gauge ensembles on the 
163 × 32 lattice with the Wilson gauge action at β = 6/g2 = 5.95
(with lattice spacing a ∼ 0.1 fm), for three sets of sea-quark 
masses: (mu, md) = {(0.01, 0.02), (0.015, 0.03), (0.02, 0.04)}, with 
corresponding charged pion masses in the range 250–330 MeV. 
Here the ratio md/mu has been fixed to 2, close to its physi-
cal limit. For the quark part, we use the optimal domain-wall 
fermion (ODWF) [13] with c = 1, d = 0 (i.e., H = H w ), Ns = 16, 
and λmin/λmax = 0.05/6.2. For each (mu, md) sea-quark mass, we 
generate the initial 300–400 trajectories with a Nvidia GPU. After 
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Fig. 3. Histogram of topological charge distribution for three gauge ensembles with (mu ,md) = {(0.01,0.02), (0.015,0.03), (0.02,0.04)}.

Fig. 4. (a) The time-correlation function of charged pion. (b) The effective mass of (a). Each solid line in (a) connecting the data points of the same (mu, md) is for guiding 
the eyes. The horizontal lines in (b) denote the fitted masses with the error bars.
discarding the initial 200 trajectories for thermalization, we sample 
one configuration every 5 trajectories, resulting 20–32 “seed” con-
figurations for each (mu, md) sea-quark mass. Then we use these 
seed configurations as the initial configurations for independent 
simulations on 20–32 GPUs. Each GPU generates 200–250 trajec-
tories independently. Then we accumulate a total of ∼ 4500 tra-
jectories for each (mu, md) sea-quark mass. From the saturation 
of the binning error of the plaquette, as well as the evolution of 
the topological charge, we estimate the autocorrelation time to be 
around 10 trajectories. Thus we sample one configuration every 
10 trajectories, and obtain ∼ 450 configurations for each (mu, md)

sea-quark mass.
In Fig. 3, we plot the histogram of the topological charge (Q t ) 

distribution for these three ensembles. Evidently, the probabil-
ity distribution of Q t for each ensemble behaves like a Gaus-
sian, and it becomes more sharply peaked around Q t = 0 as the 
sea-quark mass gets smaller. Here the topological charge Q t =∑

x εμνλσ tr[Fμν(x)Fλσ (x)]/(32π2), where the matrix-valued field 
tensor Fμν(x) is obtained from the four plaquettes surrounding x
on the (μ̂, ̂ν) plane. Even though the resulting topological charge is 
not exactly equal to an integer, the probability distribution P (Q t)

suffices to demonstrate that the HMC indeed samples all topologi-
cal sectors ergodically.

We compute the valence quark propagator with the point 
source at the origin, and with parameters exactly the same as 
those of the sea-quarks (Ns = 16 and λmin/λmax = 0.05/6.2). 
For each ensemble, we measure the time-correlation function 
C(t) of the charged pion, and fit C(t) to the formula z2[e−Mt +
e−M(T −t)]/(2M) to extract the mass M and the decay constant 
f = (mu + md)z/(2M2). In Fig. 4, we plot the time-correlation 
function C(t) and the effective mass of the charged pion for 
(mu, md) = {(0.01, 0.02), (0.015, 0.03), (0.02, 0.04)}. Further stud-
ies with these three gauge ensembles will be presented in a forth-
coming paper.

To summarize, we present an exact pseudofermion action for 
HMC of one-flavor DWF, with the effective 4-dimensional Dirac op-
erator equal to the optimal rational approximation of the overlap-
Dirac operator with kernel H = cH w(1 + dγ5 H w)−1, where c and 
d are constants. The efficiency of EOFA is compatible with that of 
RHMC, for the lattices (83 × 16 × 16, and 83 × 24 × 16) we have 
tested so far. For larger lattices, we expect that EOFA would out-
perform RHMC, and the detailed analysis will be given in Ref. [20]. 
Moreover, the memory consumption of EOFA is much smaller than 
that of RHMC. These features make EOFA a better choice for large-
scale simulations of lattice QCD with DWF. Finally, we perform the 
first dynamical simulation of (1 +1)-flavors QCD with domain-wall 
fermion, which demonstrates that it is feasible to perform large-
scale simulations of lattice QCD with EOFA. Now TWQCD Collabo-
ration is using EOFA to simulate lattice QCD with (u, d, s, c) quarks 
on the 243 × 48 × 16 and 323 × 64 × 16 lattices, with Nvidia GPUs 
(GTX-TITAN).
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