3,285 research outputs found

    GSPD: An algorithm for time-dependent tokamak equilibria design

    Full text link
    One of the common tasks required for designing new plasma pulses or shaping scenarios is to design the desired equilibria using an equilibrium (Grad-Shafranov equation) solver. However, standard equilibrium solvers are time-independent and cannot include dynamic effects such as plasma current drive, induced vessel currents, or voltage constraints. In this work we present the Grad-Shafranov Pulse Design (GSPD) algorithm, which solves for sequences of equilibria while simultaneously including time-dependent effects. The computed equilibria satisfy both Grad-Shafranov force balance and axisymmetric conductor circuit dynamics. The code for GSPD is available at github.com/plasmacontrol/GSPD

    A Linux PC cluster for lattice QCD with exact chiral symmetry

    Full text link
    A computational system for lattice QCD with exact chiral symmetry is described. The platform is a home-made Linux PC cluster, built with off-the-shelf components. At present this system constitutes of 64 nodes, with each node consisting of one Pentium 4 processor (1.6/2.0/2.5 GHz), one Gbyte of PC800/PC1066 RDRAM, one 40/80/120 Gbyte hard disk, and a network card. The computationally intensive parts of our program are written in SSE2 codes. The speed of this system is estimated to be 70 Gflops, and its price/performance is better than $1.0/Mflops for 64-bit (double precision) computations in quenched QCD. We discuss how to optimize its hardware and software for computing quark propagators via the overlap Dirac operator.Comment: 24 pages, LaTeX, 2 eps figures, v2:a note and references added, the version published in Int. J. Mod. Phys.

    A note on Zolotarev optimal rational approximation for the overlap Dirac operator

    Full text link
    We discuss the salient features of Zolotarev optimal rational approximation for the inverse square root function, in particular, for its applications in lattice QCD with overlap Dirac quark. The theoretical error bound for the matrix-vector multiplication Hw(Hw2)1/2Y H_w (H_w^2)^{-1/2}Y is derived. We check that the error bound is always satisfied amply, for any QCD gauge configurations we have tested. An empirical formula for the error bound is determined, together with its numerical values (by evaluating elliptic functions) listed in Table 2 as well as plotted in Figure 3. Our results suggest that with Zolotarev approximation to (Hw2)1/2 (H_w^2)^{-1/2} , one can practically preserve the exact chiral symmetry of the overlap Dirac operator to very high precision, for any gauge configurations on a finite lattice.Comment: 23 pages, 5 eps figures, v2:minor clarifications, and references added, to appear in Phys. Rev.

    Dynamical Evolution of Boson Stars II: Excited States and Self-Interacting Fields

    Full text link
    The dynamical evolution of self-gravitating scalar field configurations in numerical relativity is studied. The previous analysis on ground state boson stars of non-interacting fields is extended to excited states and to fields with self couplings. Self couplings can significantly change the physical dimensions of boson stars, making them much more astrophysically interesting (e.g., having mass of order 0.1 solar mass). The stable (SS) and unstable (UU) branches of equilibrium configurations of boson stars of self-interacting fields are studied; their behavior under perturbations and their quasi-normal oscillation frequencies are determined and compared to the non-interacting case. Excited states of boson stars with and without self-couplings are studied and compared. Excited states also have equilibrium configurations with SS and UU branch structures; both branches are intrinsically unstable under a generic perturbation but have very different instability time scales. We carried out a detailed study of the instability time scales of these configurations. It is found that highly excited states spontaneously decay through a cascade of intermediate states similar to atomic transitions.Comment: 16 pages+ 13 figures . All figures are available at http://wugrav.wustl.edu/Paper

    Frenkel line and solubility maximum in supercritical fluids

    Get PDF
    This research utilised Queen Mary’s MidPlus computational facilities, supported by QMUL Research-IT and funded by EPSRC Grant EP/K000128/1. K.T. is grateful to EPSRC, C.Y. to CSC. V.V.B. is grateful to RSF (14-2200093) for financial support

    Differentiation and Protective Capacity of Virus-Specific CD8

    Get PDF
    Noroviruses can establish chronic infections with active viral shedding in healthy humans but whether persistence is associated with adaptive immune dysfunction is unknown. We used genetically engineered strains of mouse norovirus (MNV) to investigate CD8+ T cell differentiation during chronic infection. We found that chronic infection drove MNV-specific tissue-resident memory (Trm) CD8+ T cells to a differentiation state resembling inflationary effector responses against latent cytomegalovirus with only limited evidence of exhaustion. These MNV-specific Trm cells remained highly functional yet appeared ignorant of ongoing viral replication. Pre-existing MNV-specific Trm cells provided partial protection against chronic infection but largely ceased to detect virus within 72 hours of challenge, demonstrating rapid sequestration of viral replication away from T cells. Our studies revealed a strategy of immune evasion by MNV via the induction of a CD8+ T cell program normally reserved for latent pathogens and persistence in an immune-privileged enteric niche. Chronic infections often cause T cell dysfunction, but how noroviruses (NV) evade immunity is unknown. Tomov et al. show that gut-resident T cells against NV remain functional but ignorant of chronic viral replication, suggesting that NV persists in an immune-privileged enteric niche. © 2017 Elsevier Inc

    Numerical relativity with characteristic evolution, using six angular patches

    Get PDF
    The characteristic approach to numerical relativity is a useful tool in evolving gravitational systems. In the past this has been implemented using two patches of stereographic angular coordinates. In other applications, a six-patch angular coordinate system has proved effective. Here we investigate the use of a six-patch system in characteristic numerical relativity, by comparing an existing two-patch implementation (using second-order finite differencing throughout) with a new six-patch implementation (using either second- or fourth-order finite differencing for the angular derivatives). We compare these different codes by monitoring the Einstein constraint equations, numerically evaluated independently from the evolution. We find that, compared to the (second-order) two-patch code at equivalent resolutions, the errors of the second-order six-patch code are smaller by a factor of about 2, and the errors of the fourth-order six-patch code are smaller by a factor of nearly 50.Comment: 12 pages, 5 figures, submitted to CQG (special NFNR issue

    A practical implementation of the Overlap-Dirac operator

    Full text link
    A practical implementation of the Overlap-Dirac operator 1+γ5ϵ(H)2{{1+\gamma_5\epsilon(H)}\over 2} is presented. The implementation exploits the sparseness of HH and does not require full storage. A simple application to parity invariant three dimensional SU(2) gauge theory is carried out to establish that zero modes related to topology are exactly reproduced on the lattice.Comment: Y-axis label in figure correcte

    Soliton formation from a pulse passing the zero-dispersion point in a nonlinear Schr\"odinger equation

    Full text link
    We consider in detail the self-trapping of a soliton from a wave pulse that passes from a defocussing region into a focussing one in a spatially inhomogeneous nonlinear waveguide, described by a nonlinear Schrodinger equation in which the dispersion coefficient changes its sign from normal to anomalous. The model has direct applications to dispersion-decreasing nonlinear optical fibers, and to natural waveguides for internal waves in the ocean. It is found that, depending on the (conserved) energy and (nonconserved) mass of the initial pulse, four qualitatively different outcomes of the pulse transformation are possible: decay into radiation; self-trapping into a single soliton; formation of a breather; and formation of a pair of counterpropagating solitons. A corresponding chart is drawn on a parametric plane, which demonstrates some unexpected features. In particular, it is found that any kind of soliton(s) (including the breather and counterpropagating pair) eventually decays into pure radiation with the increase of the energy, the initial mass being kept constant. It is also noteworthy that a virtually direct transition from a single soliton into a pair of symmetric counterpropagating ones seems possible. An explanation for these features is proposed. In two cases when analytical approximations apply, viz., a simple perturbation theory for broad initial pulses, or the variational approximation for narrow ones, comparison with the direct simulations shows reasonable agreement.Comment: 18 pages, 10 figures, 1 table. Phys. Rev. E, in pres

    New two-loop contribution to electric dipole moment in supersymmetric theories

    Get PDF
    We calculate a new type of two-loop contributions to the electric dipole moments of the electron and neutron in supersymmetric theories. The new contributions are originated from the potential CP violation in the trilinear couplings of the Higgs bosons to the scalar-top or the scalar-bottom quarks. These couplings were previously very weakly constrained. The electric dipole moments are induced through a mechanism analogous to that due to Barr and Zee. We find observable effects for a sizeable portion of the parameter space related to the third generation scalar-quarks in the minimal supersymmetric standard model which cannot be excluded by earlier considerations.Comment: Erratum appended in the paper: EDM predictions are by a factor 2 larger than those given in the published versio
    corecore