277 research outputs found

    Sources and distribution of NO(x) in the upper troposphere at northern midlatitudes

    Get PDF
    A simple quasi 2-D model is used to study the zonal distribution of NO(x). The model includes vertical transport in form of eddy diffusion and deep convection, zonal transport by a vertically uniform wind, and a simplified chemistry of NO, NO2 and HNO3. The NO(x) sources considered are surface emissions (mostly from the combustion of fossil fuel), lightning, aircraft emissions, and downward transport from the stratosphere. The model is applied to the latitude band of 40 deg N to 50 deg N during the month of June; the contributions to the zonal NO(x) distribution from the individual sources and transport processes are investigated. The model predicted NO(x) concentration in the upper troposphere is dominated by air lofted from the polluted planetary boundary layer over the large industrial areas of Eastern North America and Europe. Aircraft emissions are also important and contribute on average 30 percent. Stratospheric input is minor about 10 percent, less even than that by lightning. The model provides a clear indication of intercontinental transport of NO(x) and HNO3 in the upper troposphere. Comparison of the modelled NO profiles over the Western Atlantic with those measured during STRATOZ 3 in 1984 shows good agreement at all altitudes

    Application of fuzzy c-means clustering for analysis of chemical ionization mass spectra: insights into the gas-phase chemistry of NO3-initiated oxidation of isoprene

    Get PDF
    Oxidation of volatile organic compounds (VOCs) can lead to the formation of secondary organic aerosol, a significant component of atmospheric fine particles, which can affect air quality, human health, and climate change. However, current understanding of the formation mechanism of SOA is still incomplete, which is not only due to the complexity of the chemistry, but also relates to analytical challenges in SOA precursor detection and quantification. Recent instrumental advances, especially the developments of high-resolution time-of-flight chemical ionization mass spectrometry (CIMS), greatly enhanced the capability to detect low- and extremely low-volatility organic molecules (L/ELVOCs). Although detection and characterization of low volatility vapors largely improved our understanding of SOA formation, analyzing and interpreting complex mass spectrometric data remains a challenging task. This necessitates the use of dimension-reduction techniques to simplify mass spectrometric data with the purpose of extracting chemical and kinetic information of the investigated system. Here we present an approach by using fuzzy c-means clustering (FCM) to analyze CIMS data from chamber experiments aiming to investigate the gas-phase chemistry of nitrate radical initiated oxidation of isoprene. The performance of FCM was evaluated and validated. By applying FCM various oxidation products were classified into different groups according to their chemical and kinetic properties, and the common patterns of their time series were identified, which gave insights into the chemistry of the system investigated. The chemical properties are characterized by elemental ratios and average carbon oxidation state, and the kinetic behaviors are parameterized with generation number and effective rate coefficient (describing the average reactivity of a species) by using the gamma kinetic parameterization model. In addition, the fuzziness of FCM algorithm provides a possibility to separate isomers or different chemical processes species are involved in, which could be useful for mechanism development. Overall FCM is a well applicable technique to simplify complex mass spectrometric data, and the chemical and kinetic properties derived from clustering can be utilized to understand the reaction system of interest.</p

    Ultraviolet radiation changes

    Get PDF
    A major consequence of ozone depletion is an increase in solar ultraviolet (UV) radiation received at the Earth's surface. This chapter discusses advances that were made since the previous assessment (World Meteorological Organization (WMO)) to our understanding of UV radiation. The impacts of these changes in UV on the biosphere are not included, because they are discussed in the effects assessment

    Heterogeneous processes: Laboratory, field, and modeling studies

    Get PDF
    The efficiencies of chemical families such as ClO(x) and NO(x) for altering the total abundance and distribution of stratospheric ozone are controlled by a partitioning between reactive (active) and nonreactive (reservoir) compounds within each family. Gas phase thermodynamics, photochemistry, and kinetics would dictate, for example, that only about 1 percent of the chlorine resident in the lower stratosphere would be in the form of active Cl or ClO, the remainder existing in the reservoir compounds HCl and ClONO2. The consistency of this picture was recently challenged by the recognition that important chemical transformations take place on polar regions: the Airborne Antarctic Ozone Experiment (AAOE) and the Airborne Arctic Stratospheric Expedition (AASA). Following the discovery of the Antarctic ozone hole, Solomon et al. suggested that the heterogeneous chemical reaction: ClONO2(g)+HCl(s) yields Cl2(g)+HNO3(s) could play a key role in converting chlorine from inactive forms into a species (Cl2) that would rapidly dissociate in sunlight to liberate atomic chlorine and initiate ozone depletion. The symbols (s) and (g) denote solid phase, or adsorbed onto a solid surface, and gas phase, respectively, and represent the approach by which such a reaction is modeled rather than the microscopic details of the reaction. The reaction was expected to be most important at altitudes where PSC's were most prevalent (10 to 25 km), thereby extending the altitude range over which chlorine compounds can efficiently destroy ozone from the 35 to 45 km region (where concentrations of active chlorine are usually highest) to lower altitudes where the ozone concentration is at its peak. This chapter will briefly review the current state of knowledge of heterogeneous processes in the stratosphere, emphasizing those results obtained since the World Meteorological Organization (WMO) conference. Sections are included on laboratory investigations of heterogeneous reactions, the characteristics and climatology of PSC's, stratospheric sulfate aerosols, and evidence of heterogeneous chemical processing

    Missing OH source in a suburban environment near Beijing: observed and modelled OH and HO2 concentrations in summer 2006

    Get PDF
    Measurements of ambient OH and HO2 radicals were performed by laser induced fluorescence (LIF) during CAREBeijing2006 (Campaigns of Air Quality Research in Beijing and Surrounding Region 2006) at the suburban site Yufa in the south of Beijing in summer 2006. On most days, local air chemistry was influenced by aged air pollution that was advected by a slow, almost stagnant wind from southern regions. Observed daily concentration maxima were in the range of (4–17) × 106 cm&minus;3 for OH and (2–24) × 108 cm&minus;3 for HO2 (including an estimated interference of 25% from RO2). During daytime, OH reactivities were generally high (10–30 s−1) and mainly contributed by observed VOCs and their calculated oxidation products. The comparison of modelled and measured HOx concentrations reveals a systematic underprediction of OH as a function of NO. A large discrepancy of a factor 2.6 is found at the lowest NO concentration encountered (0.1 ppb), whereas the discrepancy becomes insignificant above 1 ppb NO. This study extends similar observations from the Pearl-River Delta (PRD) in South China to a more urban environment. The OH discrepancy at Yufa can be resolved, if NO-independent additional OH recycling is assumed in the model. The postulated Leuven Isoprene Mechanism (LIM) has the potential to explain the gap between modelled and measured OH at Beijing taking into account conservative error estimates, but lacks experimental confirmation. This and the hereby unresolved discrepancy at PRD suggest that other VOCs besides isoprene might be involved in the required, additional OH recycling. Fast primary production of ROx radicals up to 7 ppb h&minus;1 was determined at Beijing which was dominated by the photolysis of O3, HONO, HCHO, and dicarbonyls. For a special case, 20 August, when the plume of Beijing city was encountered, a missing primary HOx source (about 3 ppb h&minus;1) was determined under high NOx conditions similar to other urban areas like Mexico City. CAREBeijing2006 emphasizes the important role of OVOCs as a radical source and sink, and the need for further investigation of the chemical degradation of VOCs in order to better understand radical chemistry in VOC-rich air

    Investigation of the β-pinene photooxidation by OH in the atmosphere simulation chamber SAPHIR

    Get PDF
    Beside isoprene, monoterpenes are the non-methane volatile organic compounds (VOC) with the highest global emission rates. Due to their high reactivity towards OH, monoterpenes can dominate the radical chemistry of the atmosphere in forested areas. In the present study the photochemical degradation mechanism of β-pinene was investigated in the Jülich atmosphere simulation chamber SAPHIR. The focus of this study is on the OH budget in the degradation process. Therefore the SAPHIR chamber was equipped with instrumentation to measure radicals (OH, HO2, RO2), the total OH reactivity, important OH precursors (O3, HONO, HCHO), the parent VOC beta-pinene, its main oxidation products, acetone and nopinone, and photolysis frequencies. All experiments were carried out under low NOx conditions (≤ 2 ppb) and at atmospheric beta-pinene concentrations (≤ 5 ppb) with and without addition of ozone. For the investigation of the OH budget, the OH production and destruction rates were calculated from measured quantities. Within the limits of accuracy of the instruments, the OH budget was balanced in all β-pinene oxidation experiments. However, even though the OH budget was closed, simulation results from the Master Chemical Mechanism 3.2 showed that the OH production and destruction rates were underestimated by the model. The measured OH and HO2 concentrations were underestimated by up to a factor of two whereas the total OH reactivity was slightly overestimated because of the poor reproduction of the measured nopinone by the model by up to a factor of three. A new, theory-derived first-generation product distribution by Vereecken and Peeters was able to reproduce the measured nopinone time series and the total OH reactivity. Nevertheless the measured OH and HO2 concentrations remained underestimated by the numerical simulations. These observations together with the fact that the measured OH budget was closed suggest the existence of unaccounted sources of HO2
    • …
    corecore