563 research outputs found

    Fast Inverse Nonlinear Fourier Transform For Generating Multi-Solitons In Optical Fiber

    Full text link
    The achievable data rates of current fiber-optic wavelength-division-multiplexing (WDM) systems are limited by nonlinear interactions between different subchannels. Recently, it was thus proposed to replace the conventional Fourier transform in WDM systems with an appropriately defined nonlinear Fourier transform (NFT). The computational complexity of NFTs is a topic of current research. In this paper, a fast inverse NFT algorithm for the important special case of multi-solitonic signals is presented. The algorithm requires only O(Dlog2D)\mathcal{O}(D\log^{2}D) floating point operations to compute DD samples of a multi-soliton. To the best of our knowledge, this is the first algorithm for this problem with log2\log^{2}-linear complexity. The paper also includes a many samples analysis of the generated nonlinear Fourier spectra.Comment: Submitted to IEEE ISIT 2015 (fixed a few typos

    Slip velocity method for three-dimensional compressible turbulent boundary layers

    Get PDF
    A slip velocity method for 2-D incompressible turbulent boundary layers was presented in AIAA Paper 88-0137. The inner part of the boundary layer was characterized by a law of the wall and a law of the wake, and the outer part was characterized by an arbitrary eddy viscosity model. In the present study for compressible flows, only a law of the wall is considered. The problem of 2-D compressible flow is treated first; then the extension to 3-D flow is addressed. A formulation for primitive variables is presented

    On the execution of high level formal specifications

    Get PDF
    Executable specifications can serve as prototypes of the specified system and as oracles for automated testing of implementations, and so are more useful than non-executable specifications. Executable specifications can also be debugged in much the same way as programs, allowing errors to be detected and corrected at the specification level rather than in later stages of software development. However, existing executable specification languages often force the specifier to work at a low level of abstraction, which negates many of the advantages of non-executable specifications. This dissertation shows how to execute specifications written at a level of abstraction comparable to that found in specifications written in non-executable specification languages. The key innovation is an algorithm for evaluating and satisfying first order predicate logic assertions written over abstract model types. This is important because many specification languages use such assertions. Some of the features of this algorithm were inspired by techniques from constraint logic programming

    On computing high-dimensional Riemann theta functions

    Get PDF
    Riemann theta functions play a crucial role in the field of nonlinear Fourier analysis, where they are used to realize inverse nonlinear Fourier transforms for periodic signals. The practical applicability of this approach has however been limited since Riemann theta functions are multi-dimensional Fourier series whose computation suffers from the curse of dimensionality. In this paper, we investigate several new approaches to compute Riemann theta functions with the goal of unlocking their practical potential. Our first contributions are novel theoretical lower and upper bounds on the series truncation error. These bounds allow us to rule out several of the existing approaches for the high-dimension regime. We then propose to consider low-rank tensor and hyperbolic cross based techniques. We first examine a tensor-train based algorithm which utilizes the popular scaling and squaring approach. We show theoretically that this approach cannot break the curse of dimensionality. Finally, we investigate two other tensor-train based methods numerically and compare them to hyperbolic cross based methods. Using finite-genus solutions of the Korteweg–de Vries (KdV) and nonlinear Schrödinger equation (NLS) equations, we demonstrate the accuracy of the proposed algorithms. The tensor-train based algorithms are shown to work well for low genus solutions with real arguments but are limited by memory for higher genera. The hyperbolic cross based algorithm also achieves high accuracy for low genus solutions. Its novelty is the ability to feasibly compute moderately accurate solutions (a relative error of magnitude 0.01) for high dimensions (up to 60). It therefore enables the computation of complex inverse nonlinear Fourier transforms that were so far out of reach

    On-orbit structural dynamic performance of a 15-meter microwave radiometer antenna

    Get PDF
    The on-orbit structural dynamic performance of a microwave radiometer antenna for Earth science applications is addressed. The radiometer is one of the Earth-observing instruments aboard a proposed geostationary platform as part of the Mission to the Planet Earth. A sequential approach is presented for assessing the ability of an antenna structure to retain its geometric shape subject to a representative onboard disturbance. This approach includes establishing the structural requirements of the antenna, developing the structural and disturbance models, performing modal and forced response analyses, and evaluating the resulting distortions in terms of the antenna's ability to meet stringent structural performance requirements. Two antenna configurations are discussed: free-flying and platform-mounted. These configurations are analyzed for a representative disturbance function which simulates rotation of the subreflector in order to perform a raster-type scan of the Earth disk. Results show that the scanning maneuver modeled would not induce antenna structural errors outside the specified limits
    corecore