650 research outputs found

    The spectroscopic evolution of the symbiotic star AG Draconis. I.The O VI Raman, Balmer, and helium emission line variations during the outburst of 2006-2008

    Full text link
    AG Dra is one of a small group of low metallicity S-type symbiotic binaries with K-type giants that undergoes occasional short-term outbursts of unknown origin. Our aim is to study the behavior of the white dwarf during an outburst using the optical Raman lines and other emission features in the red giant wind. The goal is to determine changes in the envelope and the wind of the gainer in this system during a major outburst event and to study the coupling between the UV and optical during a major outburst. Using medium and high resolution groundbased optical spectra and comparisons with archival FUSEFUSE and HST/STISHST/STIS spectra, we study the evolution of the Raman O VI features and the Balmer, He I, and He II lines during the outburst from 2006 Sept. through 2007 May and include more recent observations (2009) to study the subsequent evolution of the source. The O VI Raman features disappeared completely at the peak of the major outburst and the subsequent variation differs substantially from that reported during the previous decade. The He I and He II lines, and the Balmer lines, vary in phase with the Raman features but there is a double-valuedness to the He I 6678, 7065 relative to the O VI Raman 6825\AA\ variations in the period between 2006-2008 that has not been previously reported. The variations in the Raman feature ratio through the outburst interval are consistent with the disappearance of the O VI FUV resonance wind lines from the white dwarf and of the surrounding O+5^{+5} ionized region within the red giant wind provoked by the expansion and cooling of the white dwarf photosphere.Comment: 10 pages, 15 figs. A&A (in press, accepted for publication 23/11/2009

    The Long-Term Spectroscopic Misadventures of AG Dra with a Nod toward V407 Cyg: Degenerates Behaving Badly

    Get PDF
    We present some results of an ongoing study of the long-term spectroscopic variations of AG Dra, a prototypical eruptive symbiotic system. We discuss the effects of the environment and orbital modulation in this system and some of the physical processes revealed by a comparison with the nova outburst of the symbiotic-like recurrent nova V407 Cyg 2010

    The long-term spectroscopic misadventures of AG Dra with a nod toward V407 Cyg: Degenerates behaving badly

    Full text link
    We present some results of an ongoing study of the long-term spectroscopic variations of AG Dra, a prototypical eruptive symbiotic system. We discuss the effects of the environment and orbital modulation in this system and some of the physical processes revealed by a comparison with the nova outburst of the symbiotic-like recurrent nova V407 Cyg 2010.Comment: 11 pages, invited review to appear in the proceedings of the 2011 Asiago Workshop on Symbiotic Stars, A. Siviero and U. Munari eds., Baltic Astronomy special issue. See also http://etd.adm.unipi.it/theses/available/etd-05052010-002805

    Lifetime measurements in CeI, CeII, and CeIII using time-resolved laser spectroscopy with application to stellar abundance determinations of cerium

    Get PDF
    Radiative lifetimes of two levels in Ce I, eight levels in Ce rr, and nine levels in Ce III have been measured using the time-resolved laser-induced fluorescence technique. Free cerium atoms and singly and doubly ionized ions were obtained in a laser-produced plasma. A narrow bandwidth UV laser pulse was employed to selectively populate the short-lived upper levels and the lifetime values were evaluated from the time-resolved fluorescence signals recorded by a fast detection system. Transition probabilities for Ce III were obtained from branching fractions calculated by the Cowan code and the experimental lifetimes. The results are compared with previous measurements and calculations. Spectral Lines of Ce III were identified in the spectrum of the magnetic chemically peculiar star alpha(2)CVn and the abundance of cerium was determined from synthetic spectrum fitting to be 800 times greater than the solar abundance

    Heavy Elements and Cool Stars

    Get PDF
    We report on progress in the analysis of high-resolution near-IR spectra of alpha Orionis (M2 Iab) and other cool, luminous stars. Using synthetic spectrum techniques, we search for atomic absorption lines in the stellar spectra and evaluate the available line parameter data for use in our abundance analyses. Our study concentrates on the post iron-group elements copper through zirconium as a means of investigating the slow neutron-capture process of nucleosynthesis in massive stars and the mechanisms that transport recently processed material up into the photospheric region. We discuss problems with the atomic data and model atmospheres that need to be addressed before theoretically derived elemental abundances from pre-supernova nucleosynthesis calculations can be tested by comparison with abundances determined from observations of cool, massive stars

    Effect of quantum noise on Coulomb blockade in normal tunnel junctions at high voltages

    Get PDF
    We have investigated asymptotic behavior of normal tunnel junctions at voltages where even the best ohmic environments start to look like RC transmission lines. In the experiments, this is manifested by an exceedingly slow approach to the linear behavior above the Coulomb gap. As expected on the basis of the quantum theory taking into account interaction with the environmental modes, better fits are obtained using 1/sqrt{V}- than 1/V- dependence for the asymptote. These results agree with the horizon picture if the frequency-dependent phase velocity is employed instead of the speed of light in order to determine the extent of the surroundings seen by the junction.Comment: 9 pages, 4 figures, submitted to Phys. Rev.

    Abundances of Vanadium and Bromine in 3 Cen A: Additional Odd-Z Anomalies

    Full text link
    We report abundance excesses of 1.2 and 2.6 dex, respectively, for vanadium and bromine in the hot, peculiar star 3 Cen A. Abundances for these two odd-Z elements have not been previously reported for this star. Taken with previous work, they strengthen the case of the origin of the abundance peculiarities by diffusion.Comment: 4 Pages, 2 tables, 2 figures; accepted by Astronomy and Astrophysic

    The spectroscopic evolution of the symbiotic-like recurrent nova V407 Cygni during its 2010 outburst. I. The shock and its evolution

    Full text link
    On 2010 Mar 10, V407 Cyg was discovered in outburst, eventually reaching V< 8 and detected by Fermi. Using medium and high resolution ground-based optical spectra, visual and Swift UV photometry, and Swift X-ray spectrophotometry, we describe the behavior of the high-velocity profile evolution for this nova during its first three months. The peak of the X-ray emission occurred at about day 40 with a broad maximum and decline after day 50. The main changes in the optical spectrum began at around that time. The He II 4686A line first appeared between days 7 and 14 and initially displayed a broad, symmetric profile that is characteristic of all species before day 60. Low-excitation lines remained comparatively narrow, with v(rad,max) of order 200-400 km/s. They were systematically more symmetric than lines such as [Ca V], [Fe VII], [Fe X], and He II, all of which showed a sequence of profile changes going from symmetric to a blue wing similar to that of the low ionization species but with a red wing extended to as high as 600 km/s . The Na I D doublet developed a broad component with similar velocity width to the other low-ionization species. The O VI Raman features were not detected. We interpret these variations as aspherical expansion of the ejecta within the Mira wind. The blue side is from the shock penetrating into the wind while the red wing is from the low-density periphery. The maximum radial velocities obey power laws, v(rad,max) t^{-n} with n ~ 1/3 for red wing and ~0.8 for the blue. (truncated)Comment: Accepted for publication, A&A (submitted: 9 Oct 2010; accepted: 1 Dec 2010) in press; based on data obtained with Swift, Nordic Optical Telescope, Ondrejov Observatory. Corrected typo, Fermi?LAT detection was at energies above 100 MeV (with thanks to C. C. Cheung

    Re II and Other Exotic Spectra in HD 65949

    Full text link
    Powerful astronomical spectra reveal an urgent need for additional work on atomic lines, levels, and oscillator strengths. The star HD 65949 provides some excellent examples of species rarely identified in stellar spectra. For example, the Re II spectrum is well developed, with 17 lines between 3731 and 4904 [A], attributed wholly or partially to Re II. Classifications and oscillator strengths are lacking for a number of these lines. The spectrum of Os II is well identified. Of 14 lines attributed wholly or partially to Os II, only one has an entry in the VALD database. We find strong evidence that Te II is present. There are NO Te II lines in the VALD database. Ru II is clearly present, but oscillator strengths for lines in the visual are lacking. There is excellent to marginal evidence for a number of less commonly identified species, including Kr II, Nb II, Sb II, Xe II, Pr III, Ho III, Au II, and Pt II (probably Pt-198), to be present in the spectrum of HD 65949. The line Hg II at 3984 [A] is of outstanding strength, and all three lines of Multiplet 1 of Hg I are present, even though the surface temperature of HD 65949 is relatively high. Finally, we present the case of an unidentified, 24 [mA], line at 3859.63 [A], which could be the same feature seen in magnetic CP stars. It is typically blended with a putative U II line used in cosmochronology.Comment: ASOS9 Poster (Lund, Sweden, August 2007), to be published in Journal of Physics: Conference Series (JPCS), 6 pages 1 figur
    corecore