453 research outputs found

    Optimization of nanostructured permalloy electrodes for a lateral hybrid spin-valve structure

    Full text link
    Ferromagnetic electrodes of a lateral semiconductor-based spin-valve structure are designed to provide a maximum of spin-polarized injection current. A single-domain state in remanence is a prerequisite obtained by nanostructuring Permalloy thin film electrodes. Three regimes of aspect ratios mm are identified by room temperature magnetic force microscopy: (i) high-aspect ratios of m20m \ge 20 provide the favored remanent single-domain magnetization states, (ii) medium-aspect ratios m3m \sim 3 to m20m \sim 20 yield highly remanent states with closure domains and (iii) low-aspect ratios of m3m \le 3 lead to multi-domain structures. Lateral kinks, introduced to bridge the gap between micro- and macroscale, disturb the uniform magnetization of electrodes with high- and medium-aspect ratios. However, vertical flanks help to maintain a uniformly magnetized state at the ferromagnet-semiconcuctor contact by domain wall pinning.Comment: revised version, major structural changes, figures reorganized,6 pages, 8 figures, revte

    Different Early Post-Settlement Strategies Between American Lobsters Homarus Americanus and Rock Crabs Cancer Irroratus in the Gulf of Maine

    Get PDF
    The abundance of many invertebrates with planktonic larval stages can be determined shortly after they reach the benthos. In this study, we quantified patterns of abundance and habitat utilization of early benthic phases of the American lobster Homarus americanus and the rock crab Cancer irroratus. These 2 decapods are among the most common and abundant macroinvertebrates in coastal zones of the Gulf of Maine, with similar densities of larger individuals. Settlement and early postsettlement survival indicate that lobsters are highly substrate-specific early in life, settling predominantly in cobble beds. Crabs appear to be less selective, setting both in cobble and sand. Cumulative settlement of crabs, inferred from weekly censuses over the summer, was an order of magnitude greater than that of lobsters over the same time period. However, only crabs showed significant postsettlement losses. Although the identity of specific predators is unknown, predator exclusion experiments and placement of vacant uninhabited nursery habitat suggested that post-settlement mortality rather than emigration was responsible for these losses. The selective habitat-seeking behavior and lower post-settlement mortality of lobsters is consistent with their lower fecundity and later onset of reproductive maturity. The patterns observed for crabs, however, suggest a different strategy which is more in accordance with their higher fecundity and earlier onset of maturity. It is possible that lower fecundity but greater per-egg investment, along with strict habitat selection at settlement and lower post-settlement mortality, allows adult lobster populations to equal adult populations of crabs. This occurs despite crabs being more fecund and less habitat-selective settlers but sustaining higher postsettlement mortality

    Polarisation Independent Liquid Crystal Lenses and Contact Lenses using Embossed Reactive Mesogens

    Get PDF
    Liquid crystal lenses have promise in optical systems owing to their tunability combined with low electrical power, cost, and weight. A good example of such a system is switchable contact lenses for the correction of age‐related presbyopia. Sufficiently large phase modulation can be done using nematic liquid crystals in a meniscus lens configuration. However, the birefringent materials are inherently polarisation dependent, usually requiring orthogonal polarisations to be focussed separately. A novel method is presented for producing polarisation independent lenses based on reactive mesogens. Results are presented for a 2‐level and 3‐level diffractive Fresnel lenses, and the promise of the technique for use in refractive lenses such as contact lenses is discussed

    Polarisation Independent Liquid Crystal Lenses using Embossed Reactive Mesogens

    Get PDF
    Liquid crystal lenses have promise in optical systems owing to their tunability combined with low electrical power, cost and weight. A good example of such a system is switchable contact lenses for the correction of age‐related presbyopia. Large phase modulation can be done using nematic liquid crystals. However, the birefringent materials are inherently polarisation dependent, usually requiring orthogonal polarisations to be focused separately. A novel method is presented for producing polarisation independent lenses based on reactive mesogens

    On the magnetic stability at the surface in strongly correlated electron systems

    Full text link
    The stability of ferromagnetism at the surface at finite temperatures is investigated within the strongly correlated Hubbard model on a semi-infinite lattice. Due to the reduced surface coordination number the effective Coulomb correlation is enhanced at the surface compared to the bulk. Therefore, within the well-known Stoner-picture of band ferromagnetism one would expect the magnetic stability at the surface to be enhanced as well. However, by taking electron correlations into account well beyond the Hartree-Fock (Stoner) level we find the opposite behavior: As a function of temperature the magnetization of the surface layer decreases faster than in the bulk. By varying the hopping integral within the surface layer this behavior becomes even more pronounced. A reduced hopping integral at the surface tends to destabilize surface ferromagnetism whereas the magnetic stability gets enhanced by an increased hopping integral. This behavior represents a pure correlation effect and can be understood in terms of general arguments which are based on exact results in the limit of strong Coulomb interaction.Comment: 6 pages, RevTeX, 4 eps figures, accepted (Phys. Rev. B), for related work and info see http://orion.physik.hu-berlin.d

    Magnon-Paramagnon Effective Theory of Itinerant Ferromagnets

    Full text link
    The present work is devoted to the derivation of an effective magnon-paramagnon theory starting from a microscopic lattice model of ferromagnetic metals. For some values of the microscopic parameters it reproduces the Heisenberg theory of localized spins. For small magnetization the effective model describes the physics of weak ferromagnets in accordance with the experimental results. It is written in a way which keeps O(3) symmetry manifest,and describes both the order and disordered phases of the system. Analytical expression for the Curie temperature,which takes the magnon fluctuations into account exactly, is obtained. For weak ferromagnets TcT_c is well below the Stoner's critical temperature and the critical temperature obtained within Moriya's theory.Comment: 14 pages, changed content,new result

    A research infrastructure for SOA-based Service Delivery Frameworks

    Full text link

    Magnetic structure in a U(Ru<sub>0.92</sub>Rh<sub>0.08</sub>)<sub>2</sub>Si<sub>2</sub> single crystal studied by neutron diffraction in static magnetic fields up to 24 T

    Get PDF
    We report the high-field induced magnetic phase in single crystal of U(Ru0.92Rh0.08)2Si2. Our neutron study combined with high-field magnetization, shows that the magnetic phase above the first metamagnetic transition at Hc1 = 21.6 T has an uncompensated commensurate antiferromagnetic structure with propagation vector Q2 = ( 2/3 0 0) possessing two single-Q domains. U moments of 1.45 (9) muB directed along the c axis are arranged in an up-up-down sequence propagating along the a axis, in agreement with bulk measurements. The U magnetic form factor at high fields is consistent with both the U3+ and U4+ type. The low field short-range order that emerges from the pure URu2Si2 due to Rh-doping is initially strengthened by the field but disappears in the field-induced phase. The tetragonal symmetry is preserved across the transition but the a axis lattice parameter increases already at low fields. Our results are in agreement with itinerant electron model with 5f states forming bands pinned in the vicinity of the Fermi surface that is significantly reconstructed by the applied magnetic field.Comment: 5 pages, 4 figures, accepted as Rapid Communication, Physical Review B (2017

    Stabilization of d-Band Ferromagnetism by Hybridization with Uncorrelated Bands

    Full text link
    We investigate the influence of s-d or p-d hybridization to d-band ferromagnetism to estimate the importance of hybridization for the magnetic properties of transition metals. To focus our attention to the interplay between hybridization and correlation we investigate a simple model system consisting of two non-degenerated hybridized bands, one strongly correlated, the other one quasi-free. To solve this extended Hubbard model, we apply simple approximations, namely SDA and MAA, that, concerning ferromagnetism in the single-band model, are known to give qualitatively satisfactory results. This approach allows us to discuss the underlying mechanism, by which d-band ferromagnetism is influenced by the hybridization on the basis of analytical expressions. The latter clearly display the order and the functional dependencies of the important effects. It is found, that spin-dependent inter-band particle fluctuations cause a spin-dependent band shift and a spin-dependent band broadening of the Hubbard bands. The shift stabilizes, the broadening tends to destabilize ferromagnetism. Stabilization requires relatively high band distances and small hybridization matrix elements. Super-exchange and RKKY coupling are of minor importance.Comment: 9 pages, 7 figures, accepted for PR
    corecore