453 research outputs found
Optimization of nanostructured permalloy electrodes for a lateral hybrid spin-valve structure
Ferromagnetic electrodes of a lateral semiconductor-based spin-valve
structure are designed to provide a maximum of spin-polarized injection
current. A single-domain state in remanence is a prerequisite obtained by
nanostructuring Permalloy thin film electrodes. Three regimes of aspect ratios
are identified by room temperature magnetic force microscopy: (i)
high-aspect ratios of provide the favored remanent single-domain
magnetization states, (ii) medium-aspect ratios to yield
highly remanent states with closure domains and (iii) low-aspect ratios of lead to multi-domain structures. Lateral kinks, introduced to bridge the
gap between micro- and macroscale, disturb the uniform magnetization of
electrodes with high- and medium-aspect ratios. However, vertical flanks help
to maintain a uniformly magnetized state at the ferromagnet-semiconcuctor
contact by domain wall pinning.Comment: revised version, major structural changes, figures reorganized,6
pages, 8 figures, revte
Different Early Post-Settlement Strategies Between American Lobsters Homarus Americanus and Rock Crabs Cancer Irroratus in the Gulf of Maine
The abundance of many invertebrates with planktonic larval stages can be determined shortly after they reach the benthos. In this study, we quantified patterns of abundance and habitat utilization of early benthic phases of the American lobster Homarus americanus and the rock crab Cancer irroratus. These 2 decapods are among the most common and abundant macroinvertebrates in coastal zones of the Gulf of Maine, with similar densities of larger individuals. Settlement and early postsettlement survival indicate that lobsters are highly substrate-specific early in life, settling predominantly in cobble beds. Crabs appear to be less selective, setting both in cobble and sand. Cumulative settlement of crabs, inferred from weekly censuses over the summer, was an order of magnitude greater than that of lobsters over the same time period. However, only crabs showed significant postsettlement losses. Although the identity of specific predators is unknown, predator exclusion experiments and placement of vacant uninhabited nursery habitat suggested that post-settlement mortality rather than emigration was responsible for these losses. The selective habitat-seeking behavior and lower post-settlement mortality of lobsters is consistent with their lower fecundity and later onset of reproductive maturity. The patterns observed for crabs, however, suggest a different strategy which is more in accordance with their higher fecundity and earlier onset of maturity. It is possible that lower fecundity but greater per-egg investment, along with strict habitat selection at settlement and lower post-settlement mortality, allows adult lobster populations to equal adult populations of crabs. This occurs despite crabs being more fecund and less habitat-selective settlers but sustaining higher postsettlement mortality
Polarisation Independent Liquid Crystal Lenses and Contact Lenses using Embossed Reactive Mesogens
Liquid crystal lenses have promise in optical systems owing to their tunability combined with low electrical power, cost, and weight. A good example of such a system is switchable contact lenses for the correction of age‐related presbyopia. Sufficiently large phase modulation can be done using nematic liquid crystals in a meniscus lens configuration. However, the birefringent materials are inherently polarisation dependent, usually requiring orthogonal polarisations to be focussed separately. A novel method is presented for producing polarisation independent lenses based on reactive mesogens. Results are presented for a 2‐level and 3‐level diffractive Fresnel lenses, and the promise of the technique for use in refractive lenses such as contact lenses is discussed
Polarisation Independent Liquid Crystal Lenses using Embossed Reactive Mesogens
Liquid crystal lenses have promise in optical systems owing to their tunability combined with low electrical power, cost and weight. A good example of such a system is switchable contact lenses for the correction of age‐related presbyopia. Large phase modulation can be done using nematic liquid crystals. However, the birefringent materials are inherently polarisation dependent, usually requiring orthogonal polarisations to be focused separately. A novel method is presented for producing polarisation independent lenses based on reactive mesogens
On the magnetic stability at the surface in strongly correlated electron systems
The stability of ferromagnetism at the surface at finite temperatures is
investigated within the strongly correlated Hubbard model on a semi-infinite
lattice. Due to the reduced surface coordination number the effective Coulomb
correlation is enhanced at the surface compared to the bulk. Therefore, within
the well-known Stoner-picture of band ferromagnetism one would expect the
magnetic stability at the surface to be enhanced as well. However, by taking
electron correlations into account well beyond the Hartree-Fock (Stoner) level
we find the opposite behavior: As a function of temperature the magnetization
of the surface layer decreases faster than in the bulk. By varying the hopping
integral within the surface layer this behavior becomes even more pronounced. A
reduced hopping integral at the surface tends to destabilize surface
ferromagnetism whereas the magnetic stability gets enhanced by an increased
hopping integral. This behavior represents a pure correlation effect and can be
understood in terms of general arguments which are based on exact results in
the limit of strong Coulomb interaction.Comment: 6 pages, RevTeX, 4 eps figures, accepted (Phys. Rev. B), for related
work and info see http://orion.physik.hu-berlin.d
Magnon-Paramagnon Effective Theory of Itinerant Ferromagnets
The present work is devoted to the derivation of an effective
magnon-paramagnon theory starting from a microscopic lattice model of
ferromagnetic metals. For some values of the microscopic parameters it
reproduces the Heisenberg theory of localized spins. For small magnetization
the effective model describes the physics of weak ferromagnets in accordance
with the experimental results. It is written in a way which keeps O(3) symmetry
manifest,and describes both the order and disordered phases of the system.
Analytical expression for the Curie temperature,which takes the magnon
fluctuations into account exactly, is obtained. For weak ferromagnets is
well below the Stoner's critical temperature and the critical temperature
obtained within Moriya's theory.Comment: 14 pages, changed content,new result
Magnetic structure in a U(Ru<sub>0.92</sub>Rh<sub>0.08</sub>)<sub>2</sub>Si<sub>2</sub> single crystal studied by neutron diffraction in static magnetic fields up to 24 T
We report the high-field induced magnetic phase in single crystal of
U(Ru0.92Rh0.08)2Si2. Our neutron study combined with high-field magnetization,
shows that the magnetic phase above the first metamagnetic transition at Hc1 =
21.6 T has an uncompensated commensurate antiferromagnetic structure with
propagation vector Q2 = ( 2/3 0 0) possessing two single-Q domains. U moments
of 1.45 (9) muB directed along the c axis are arranged in an up-up-down
sequence propagating along the a axis, in agreement with bulk measurements. The
U magnetic form factor at high fields is consistent with both the U3+ and U4+
type. The low field short-range order that emerges from the pure URu2Si2 due to
Rh-doping is initially strengthened by the field but disappears in the
field-induced phase. The tetragonal symmetry is preserved across the transition
but the a axis lattice parameter increases already at low fields. Our results
are in agreement with itinerant electron model with 5f states forming bands
pinned in the vicinity of the Fermi surface that is significantly reconstructed
by the applied magnetic field.Comment: 5 pages, 4 figures, accepted as Rapid Communication, Physical Review
B (2017
Stabilization of d-Band Ferromagnetism by Hybridization with Uncorrelated Bands
We investigate the influence of s-d or p-d hybridization to d-band
ferromagnetism to estimate the importance of hybridization for the magnetic
properties of transition metals. To focus our attention to the interplay
between hybridization and correlation we investigate a simple model system
consisting of two non-degenerated hybridized bands, one strongly correlated,
the other one quasi-free. To solve this extended Hubbard model, we apply simple
approximations, namely SDA and MAA, that, concerning ferromagnetism in the
single-band model, are known to give qualitatively satisfactory results. This
approach allows us to discuss the underlying mechanism, by which d-band
ferromagnetism is influenced by the hybridization on the basis of analytical
expressions. The latter clearly display the order and the functional
dependencies of the important effects. It is found, that spin-dependent
inter-band particle fluctuations cause a spin-dependent band shift and a
spin-dependent band broadening of the Hubbard bands. The shift stabilizes, the
broadening tends to destabilize ferromagnetism. Stabilization requires
relatively high band distances and small hybridization matrix elements.
Super-exchange and RKKY coupling are of minor importance.Comment: 9 pages, 7 figures, accepted for PR
- …