51,013 research outputs found
Simple Max-Min Ant Systems and the Optimization of Linear Pseudo-Boolean Functions
With this paper, we contribute to the understanding of ant colony
optimization (ACO) algorithms by formally analyzing their runtime behavior. We
study simple MAX-MIN ant systems on the class of linear pseudo-Boolean
functions defined on binary strings of length 'n'. Our investigations point out
how the progress according to function values is stored in pheromone. We
provide a general upper bound of O((n^3 \log n)/ \rho) for two ACO variants on
all linear functions, where (\rho) determines the pheromone update strength.
Furthermore, we show improved bounds for two well-known linear pseudo-Boolean
functions called OneMax and BinVal and give additional insights using an
experimental study.Comment: 19 pages, 2 figure
Low-momentum Hyperon-Nucleon Interactions
We present a first exploratory study for hyperon-nucleon interactions using
renormalization group techniques. The effective two-body low-momentum potential
V_low-k is obtained by integrating out the high-momentum components from
realistic Nijmegen YN potentials. A T-matrix equivalence approach is employed,
so that the low-energy phase shifts are reproduced by V_low-k up to a momentum
scale Lambda ~ 500 MeV. Although the various bare Nijmegen models differ
somewhat from each other, the corresponding V_low-k interactions show
convergence in some channels, suggesting a possible unique YN interaction at
low momenta.Comment: 4 pages, 6 figure
Modeling Pressure-Ionization of Hydrogen in the Context of Astrophysics
The recent development of techniques for laser-driven shock compression of
hydrogen has opened the door to the experimental determination of its behavior
under conditions characteristic of stellar and planetary interiors. The new
data probe the equation of state (EOS) of dense hydrogen in the complex regime
of pressure ionization. The structure and evolution of dense astrophysical
bodies depend on whether the pressure ionization of hydrogen occurs
continuously or through a ``plasma phase transition'' (PPT) between a molecular
state and a plasma state. For the first time, the new experiments constrain
predictions for the PPT. We show here that the EOS model developed by Saumon
and Chabrier can successfully account for the data, and we propose an
experiment that should provide a definitive test of the predicted PPT of
hydrogen. The usefulness of the chemical picture for computing astrophysical
EOS and in modeling pressure ionization is discussed.Comment: 16 pages + 4 figures, to appear in High Pressure Researc
Optical Signatures of Spin-Orbit Interaction Effects in a Parabolic Quantum Dot
We demonstrate here that the dipole-allowed optical absorption spectrum of a
parabolic quantum dot subjected to an external magnetic field reflects the
inter-electron interaction effects when the spin-orbit interaction is also
taken into account. We have investigated the energy spectra and the
dipole-allowed transition energies for up to four interacting electrons
parabolically confined, and have uncovered several novel features in those
spectra that are solely due to the SO interaction.Comment: 4 pages, 3 figure
An evaluation of Skylab (EREP) remote sensing techniques applied to investigations of crustal structure
The author has identified the following significant results. Film positives (70mm) from all six S190A multispectral photographic camera stations for any one scene can be registered and analyzed in a color additive viewer. Using a multispectral viewer, S190A and B films can be projected directly onto published geologic and topographic maps at scales as large as 1:62,500 and 1:24,000 without significant loss of detail. S190A films and prints permit the detection of faults, fractures, and other linear features not visible in any other space imagery. S192 MSS imagery can be useful for rock-type discrimination studies and delineation of linear patterns and arcuate anomalies. Anomalous color reflectances and arcuate color patterns revealed mineralized zones, copper deposits, vegetation, and volcanic rocks in various locations such as Panamint Range (CA), Greenwater (Death Valley), Lava Mountains (CA), northwestern Arizona, and Coso Hot Springs (CA)
Test of the Equivalence Principle Using a Rotating Torsion Balance
We used a continuously rotating torsion balance instrument to measure the
acceleration difference of beryllium and titanium test bodies towards sources
at a variety of distances. Our result Delta a=(0.6+/-3.1)x10^-15 m/s^2 improves
limits on equivalence-principle violations with ranges from 1 m to infinity by
an order of magnitude. The Eoetvoes parameter is eta=(0.3+/-1.8)x10^-13. By
analyzing our data for accelerations towards the center of the Milky Way we
find equal attractions of Be and Ti towards galactic dark matter, yielding
eta=(-4 +/- 7)x10^-5. Space-fixed differential accelerations in any direction
are limited to less than 8.8x10^-15 m/s^2 with 95% confidence.Comment: 4 pages, 4 figures; accepted for publication in PR
- …