59,173 research outputs found

    Scalar Casimir Energies for Separable Coordinate Systems: Application to Semi-transparent Planes in an Annulus

    Full text link
    We derive a simplified general expression for the two-body scalar Casimir energy in generalized separable coordinate systems. We apply this technique to the case of radial semi-transparent planes in the annular region between two concentric Dirichlet cylinders. This situation is explored both analytically and numerically.Comment: 8 pages, 5 figures. Contribution to Proceedings of 9th Conference on Quantum Field Theory Under the Influence of External Conditions, QFEXT0

    Thin film dynamics on a vertically rotating disk partially immersed in a liquid bath

    Get PDF
    The axisymmetric flow of a thin liquid film is considered for the problem of a vertically rotating disk that is partially immersed in a liquid bath. A model for the fully three-dimensional free-boundary problem of the rotating disk, that drags a thin film out of the bath is set up. From this, a dimension-reduced extended lubrication approximation that includes the meniscus region is derived. This problem constitutes a generalization of the classic drag-out and drag-in problem to the case of axisymmetric flow. The resulting nonlinear fourth-order partial differential equation for the film profile is solved numerically using a finite element scheme. For a range of parameters steady states are found and compared to asymptotic solutions. Patterns of the film profile, as a function of immersion depth and angular velocity are discussed.Comment: 31 pages, 19 figures accepted: Applied Mathematical Modellin

    How does Casimir energy fall? III. Inertial forces on vacuum energy

    Full text link
    We have recently demonstrated that Casimir energy due to parallel plates, including its divergent parts, falls like conventional mass in a weak gravitational field. The divergent parts were suitably interpreted as renormalizing the bare masses of the plates. Here we corroborate our result regarding the inertial nature of Casimir energy by calculating the centripetal force on a Casimir apparatus rotating with constant angular speed. We show that the centripetal force is independent of the orientation of the Casimir apparatus in a frame whose origin is at the center of inertia of the apparatus.Comment: 8 pages, 2 figures, contribution to QFEXT07 proceeding

    Trajectory-Based Dynamic Map Labeling

    Full text link
    In this paper we introduce trajectory-based labeling, a new variant of dynamic map labeling, where a movement trajectory for the map viewport is given. We define a general labeling model and study the active range maximization problem in this model. The problem is NP-complete and W[1]-hard. In the restricted, yet practically relevant case that no more than k labels can be active at any time, we give polynomial-time algorithms. For the general case we present a practical ILP formulation with an experimental evaluation as well as approximation algorithms.Comment: 19 pages, 7 figures, extended version of a paper to appear at ISAAC 201

    Cosmic-ray induced background intercomparison with actively shielded HPGe detectors at underground locations

    Full text link
    The main background above 3\,MeV for in-beam nuclear astrophysics studies with Îł\gamma-ray detectors is caused by cosmic-ray induced secondaries. The two commonly used suppression methods, active and passive shielding, against this kind of background were formerly considered only as alternatives in nuclear astrophysics experiments. In this work the study of the effects of active shielding against cosmic-ray induced events at a medium deep location is performed. Background spectra were recorded with two actively shielded HPGe detectors. The experiment was located at 148\,m below the surface of the Earth in the Reiche Zeche mine in Freiberg, Germany. The results are compared to data with the same detectors at the Earth's surface, and at depths of 45\,m and 1400\,m, respectively.Comment: Minor errors corrected; final versio

    Phase relaxation of Faraday surface waves

    Full text link
    Surface waves on a liquid air interface excited by a vertical vibration of a fluid layer (Faraday waves) are employed to investigate the phase relaxation of ideally ordered patterns. By means of a combined frequency-amplitude modulation of the excitation signal a periodic expansion and dilatation of a square wave pattern is generated, the dynamics of which is well described by a Debye relaxator. By comparison with the results of a linear theory it is shown that this practice allows a precise measurement of the phase diffusion constant.Comment: 5 figure

    Surface Divergences and Boundary Energies in the Casimir Effect

    Full text link
    Although Casimir, or quantum vacuum, forces between distinct bodies, or self-stresses of individual bodies, have been calculated by a variety of different methods since 1948, they have always been plagued by divergences. Some of these divergences are associated with the volume, and so may be more or less unambiguously removed, while other divergences are associated with the surface. The interpretation of these has been quite controversial. Particularly mysterious is the contradiction between finite total self-energies and surface divergences in the local energy density. In this paper we clarify the role of surface divergences.Comment: 8 pages, 1 figure, submitted to proceedings of QFEXT0
    • …
    corecore