Although Casimir, or quantum vacuum, forces between distinct bodies, or
self-stresses of individual bodies, have been calculated by a variety of
different methods since 1948, they have always been plagued by divergences.
Some of these divergences are associated with the volume, and so may be more or
less unambiguously removed, while other divergences are associated with the
surface. The interpretation of these has been quite controversial. Particularly
mysterious is the contradiction between finite total self-energies and surface
divergences in the local energy density. In this paper we clarify the role of
surface divergences.Comment: 8 pages, 1 figure, submitted to proceedings of QFEXT0