38,169 research outputs found

    Private Options to Use Public Goods Exploiting Revealed Preferences to Estimate Environmental Benefits

    Get PDF
    We develop and apply a new method for estimating the economic benefits of an environmental amenity. The method fits within the household production framework (Becker 1965), and is based upon the notion of estimating the derived demand for a privately traded option to utilize a freely-available public good. In particular, the demand for state fishing licenses is used to infer the benefits of recreational fishing. Using panel data on state fishing license sales and prices for the continental United States over a fifteen-year period, combined with data on substitute prices and demographic variables, a license demand function is estimated with instrumental variable procedures to allow for the potential endogeneity of administered prices. The econometric results lead to estimates of the benefits of a fishing license, and subsequently to the expected benefits of a recreational fishing day. In contrast with previous studies, which have utilized travel cost or hypothetical market methods, our approach provides estimates that are directly comparable across geographic areas. Further, our results suggest that the benefits of recreational fishing days are generally less than previously estimated.Private Options, Public Goods, Environmental Benefits

    Symplectic and orthogonal Lie algebra technology for bosonic and fermionic oscillator models of integrable systems

    Full text link
    To provide tools, especially L-operators, for use in studies of rational Yang-Baxter algebras and quantum integrable models when the Lie algebras so(N) (b_n, d_n) or sp(2n) (c_n) are the invariance algebras of their R matrices, this paper develops a presentation of these Lie algebras convenient for the context, and derives many properties of the matrices of their defining representations and of the ad-invariant tensors that enter their multiplication laws. Metaplectic-type representations of sp(2n) and so(N) on bosonic and on fermionic Fock spaces respectively are constructed. Concise general expressions (see (5.2) and (5.5) below) for their L-operators are obtained, and used to derive simple formulas for the T operators of the rational RTT algebra of the associated integral systems, thereby enabling their efficient treatment by means of the algebraic Bethe ansatz.Comment: 24 pages, LaTe

    Fatal anaphylactic sting reaction in a patient with mastocytosis

    Get PDF
    We report on a 33-year-old female patient with indolent systemic mastocytosis and urticaria pigmentosa who died of an anaphylactic reaction after a yellow jacket sting. As she had no history of previous anaphylactic sting reaction, there was no testing performed in order to detect hymenoptera venom sensitization. But even if a sensitization had been diagnosed, no venom immunotherapy (VIT) would have been recommended. It is almost certain that VIT would have saved her life and it is most likely that VIT is indicated in some patients with mastocytosis with no history of anaphylactic sting reaction. However, no criteria have been established in order to allow a selection of mastocytosis patients eligible for such a `prophylactic' VIT. Copyright (C) 2008 S. Karger AG, Basel

    Identifying "communities" within energy landscapes

    Full text link
    Potential energy landscapes can be represented as a network of minima linked by transition states. The community structure of such networks has been obtained for a series of small Lennard-Jones clusters. This community structure is compared to the concept of funnels in the potential energy landscape. Two existing algorithms have been used to find community structure, one involving removing edges with high betweenness, the other involving optimization of the modularity. The definition of the modularity has been refined, making it more appropriate for networks such as these where multiple edges and self-connections are not included. The optimization algorithm has also been improved, using Monte Carlo methods with simulated annealing and basin hopping, both often used successfully in other optimization problems. In addition to the small clusters, two examples with known heterogeneous landscapes, LJ_13 with one labelled atom and LJ_38, were studied with this approach. The network methods found communities that are comparable to those expected from landscape analyses. This is particularly interesting since the network model does not take any barrier heights or energies of minima into account. For comparison, the network associated with a two-dimensional hexagonal lattice is also studied and is found to have high modularity, thus raising some questions about the interpretation of the community structure associated with such partitions.Comment: 13 pages, 11 figure

    Non-universality of artificial frustrated spin systems

    Full text link
    Magnetic frustration effects in artificial kagome arrays of nanomagnets with out-of-plane magnetization are investigated using Magnetic Force Microscopy and Monte Carlo simulations. Experimental and theoretical results are compared to those found for the artificial kagome spin ice, in which the nanomagnets have in-plane magnetization. In contrast with what has been recently reported, we demonstrate that long range (i.e. beyond nearest-neighbors) dipolar interactions between the nanomagnets cannot be neglected when describing the magnetic configurations observed after demagnetizing the arrays using a field protocol. As a consequence, there are clear limits to any universality in the behavior of these two artificial frustrated spin systems. We provide arguments to explain why these two systems show striking similarities at first sight in the development of pairwise spin correlations.Comment: 7 pages, 6 figure

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems
    • 

    corecore