57,063 research outputs found

    Low-energy modes of spin-imbalanced Fermi gases in BCS phase

    Full text link
    The low-energy modes of a spin-imbalanced superfluid Fermi gas in the Bardeen-Cooper-Schrieffer (BCS) side are studied. The gas is assumed to be sufficiently dilute so that the pairing of atoms can be considered effective only in s-wave between fermions of different internal state. The order parameter at equilibrium is determined by the mean-field approximation, while the properties of the collective modes are calculated within a Gaussian approximation for the fluctuations of the order parameter. In particular we investigate the effects of asymmetry between the populations of the two different components and of temperature on the frequency and damping of collective modes. It is found that the temperature does not much affect the frequency and the damping of the modes, whereas an increase of the imbalance shifts the frequency toward lower values and enhances the damping sensitively. Besides the Bogoliubov-Anderson phonons, we observe modes at zero frequency for finite values of the wave-number. These modes indicate that an instability develops driving the system toward two separate phases, normal and superfluid.Comment: 7 pages, 4 figures, submitted to European Physical Journal D for publicatio

    Errors in Hellmann-Feynman Forces due to occupation number broadening, and how they can be corrected

    Full text link
    In ab initio calculations of electronic structures, total energies, and forces, it is convenient and often even necessary to employ a broadening of the occupation numbers. If done carefully, this improves the accuracy of the calculated electron densities and total energies and stabilizes the convergence of the iterative approach towards self-consistency. However, such a boardening may lead to an error in the calculation of the forces. Accurate forces are needed for an efficient geometry optimization of polyatomic systems and for ab initio molecular dynamics (MD) calculations. The relevance of this error and possible ways to correct it will be discussed in this paper. The first approach is computationally very simple and in fact exact for small MD time steps. This is demonstrated for the example of the vibration of a carbon dimer and for the relaxation of the top layer of the (111)-surfaces of aluminium and platinum. The second, more general, scheme employs linear-response theory and is applied to the calculation of the surface relaxation of Al(111). We will show that the quadratic dependence of the forces on the broadening width enables an efficient extrapolation to the correct result. Finally the results of these correction methods will be compared to the forces obtained by using the smearing scheme, which has been proposed by Methfessel and Paxton.Comment: 6 pages, 5 figures, Scheduled tentatively for the issue of Phys. Rev. B 15 15 Dec 97 Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Design and testing of liquid hydrogen-cooled, ultrahigh-speed ball bearings

    Get PDF
    Large-bore, liquid hydrogen-cooled, ultrahigh-speed, rolling contact bearings of an optimum design allow optimization of large rocket engine turbopumps in which bearing speed is a limiting factor. Optimum design for the bearings resulted from an application of liquid hydrogen used as a coolant

    Probing Pauli Blocking Factors in Quantum Pumps with Broken Time-Reversal Symmetry

    Full text link
    A recently demonstrated quantum electron pump is discussed within the framework of photon-assisted tunneling. Due to lack of time-reversal symmetry, different results are obtained for the pump current depending on whether or not final-state Pauli blocking factors are used when describing the tunneling process. Whilst in both cases the current depends quadratically on the driving amplitude for moderate pumping, a marked difference is predicted for the temperature dependence. With blocking factors the pump current decreases roughly linearly with temperature until k_B T ~ \hbar\omega is reached, whereas without them it is unaffected by temperature, indicating that the entire Fermi sea participates in the electronic transport.Comment: 4 pages in RevTex4 (beta4), 6 figures; status: to appear in PR

    Organs from animals for man

    Get PDF
    In the following review some of the problems of xenotransplantation shall be discussed, based on the few experimental data available so far and on reports in the literature describing investigations which may be of importance for xenotransplantation. The impact of gravity on the upright posture of man versus almost all other mammals, the dysfunction between enzymes and hormones in different species and the lack of interactions between interleukins, cytokines and vasoactive substances will be taken into consideration. The question must be asked whether different levels of carrier molecules or serum proteins play a role in the physiological network. Even though the development of transgenic animals or other imaginative manipulations may lead to the acceptance of any type of xenografted organ, it has to be established for how long the products of the xenografts are able to act in the multifactorial orchestra. We are far from understanding xenogeneic molecular mechanisms involved in toxicity, necrosis and apoptosis or even reperfusion injury and ischemia in addition to the immediate mechanisms of the hyperacute xenogeneic rejection. Here, cell adhesion, blood clotting and vasomotion collide and bring micro-and macrocirculation to a standstill. All types of xenogeneic immunological mechanisms studied so far were found to have a more serious impact than those seen in allogeneic transplantation. In addition we are now only beginning to understand that so-called immunological parameters in allogeneic mechanisms act also in a true physiological manner in the xenogeneic situation. These molecular mechanisms occur behind the curtain of hyperacute, accelerated, acute or chronic xenograft rejection of which only some folds have been lifted to allow glimpses of part of the total scene. Other obstacles are likely to arise when long-term survival is achieved. These obstacles include retroviral infections, transfer of prions and severe side effects of the massive immunosuppression which will be needed. Moral, ethical and religious concerns are under debate and the species-specific production of proteins of the foreign donor species developed for clinical use suddenly appears to be a greater problem than anticipated

    A foam model highlights the differences of the macro- and microrheology of respiratory horse mucus

    Get PDF
    Native horse mucus is characterized with micro- and macrorheology and compared to hydroxyethylcellulose (HEC) gel as a model. Both systems show comparable viscoelastic properties on the microscale and for the HEC the macrorheology is in good agreement with the microrheology. For the mucus, the viscoelastic moduli on the macroscale are several orders of magnitude larger than on the microscale. Large amplitude oscillatory shear experiments show that the mucus responds nonlinearly at much smaller deformations than HEC. This behavior fosters the assumption that the mucus has a foam like structure on the microscale compared to the typical mesh like structure of the HEC, a model that is supported by cryogenic-scanning-electron-microscopy (CSEM) images. These images allow also to determine the relative amount of volume that is occupied by the pores and the scaffold. Consequently, we can estimate the elastic modulus of the scaffold. We conclude that this particular foam like microstructure should be considered as a key factor for the transport of particulate matter which plays a central role in mucus function with respect to particle penetration. The mesh properties composed of very different components are responsible for macroscopic and microscopic behavior being part of particles fate after landing.Comment: Accepted for publication in the Journal of the Mechanical Behavior of Biomedical Material
    • …
    corecore