2,631 research outputs found

    Role of inertia in two-dimensional deformation and breakup of a droplet

    Full text link
    We investigate by Lattice Boltzmann methods the effect of inertia on the deformation and break-up of a two-dimensional fluid droplet surrounded by fluid of equal viscosity (in a confined geometry) whose shear rate is increased very slowly. We give evidence that in two dimensions inertia is {\em necessary} for break-up, so that at zero Reynolds number the droplet deforms indefinitely without breaking. We identify two different routes to breakup via two-lobed and three-lobed structures respectively, and give evidence for a sharp transition between these routes as parameters are varied.Comment: 4 pages, 4 figure

    Sulphur isotope geochemistry of black shale-hosted antimony mineralization, Arnsberg, northern Rhenish Massif, Germany

    Get PDF
    Vein-type and bedding-concordant mesothermal (180ā€“410 Ā°C) stibniteā€“sulphosalt mineralization at Arnsberg, NE Rhenish Massif, Germany, is hosted by Carboniferous pyrite-rich black shales and siliceous limestones. A detailed sulphur isotope study of the stibniteā€“sulphosalt mineralization and pyrite from a variety of regional host-rock lithologies has been carried out using an in situ laser combustion technique. The 34S values of stibnite of various textural types are distinctly negative and lie in a narrow range between -23.9 and -17.1 (mean -20.1). In contrast, regional sedimentaryā€“diagenetic pyrites display a large variation of their 34S values between -45.4 and +9.3. There is little evidence for significant modification of the hydrothermal fluid during deposition and the S isotope signatures suggest that the sulphur of the stibnite mineralization was not locally derived. The 34S values of pyrite in Givetian shales display a significantly narrower range of -28.2 to -7.5 and their mean composition (-17.1) is close to the 34S values of the Arnsberg stibnite deposits. Considering the temperature-dependent isotopic fractionation between stibnite and reduced sulfur species, the 34S values of the mineralizing fluid (-16.8; 200 Ā°C) and the Givetian rock source are essentially identical. Therefore, we propose a model of leaching and isotopic homogenization of sulphur from the Middle Devonian shales and a subsequent northward migration of these fluids. The fluids were trapped in permeability-controlled positions within anticlinal zones, where fluid cooling induced deposition of stibnite and sulphosalts

    Scale invariance in coarsening of binary and ternary fluids

    Full text link
    Phase separation in binary and ternary fluids is studied using a two dimensional Lattice Gas Automata. The lengths, given by the the first zero crossing point of the correlation function and the total interface length is shown to exhibit power law dependence on time. In binary mixtures, our data clearly indicate the existence of a regime having more than one length scale where the coarsening process proceeds through the rupture and reassociation of domains. In ternary fluids; in the case of symmetric mixtures there exists a regime with a single length scale having dynamic exponent 1/2, while in asymmetric mixtures our data establish the break down of scale invariance.Comment: 20 pages, 13 figure

    Comparison of Fuzzy Integral-Fuzzy Measure based Ensemble Algorithms with the State-of-the-art Ensemble Algorithms

    Get PDF
    The Fuzzy Integral (FI) is a non-linear aggregation operator which enables the fusion of information from multiple sources in respect to a Fuzzy Measure (FM) which captures the worth of both the individual sources and all their possible combinations. Based on the expected potential of non-linear aggregation offered by the FI, its application to decision-level fusion in ensemble classifiers, i.e. to fuse multiple classifiers outputs towards one superior decision level output, has recently been explored. A key example of such a FI-FM ensemble classification method is the Decision-level Fuzzy Integral Multiple Kernel Learning (DeFIMKL) algorithm, which aggregates the outputs of kernel based classifiers through the use of the Choquet FI with respect to a FM learned through a regularised quadratic programming approach. While the approach has been validated against a number of classifiers based on multiple kernel learning, it has thus far not been compared to the state-of-the-art in ensemble classification. Thus, this paper puts forward a detailed comparison of FI-FM based ensemble methods, specifically the DeFIMKL algorithm, with state-of-the art ensemble methods including Adaboost, Bagging, Random Forest and Majority Voting over 20 public datasets from the UCI machine learning repository. The results on the selected datasets suggest that the FI based ensemble classifier performs both well and efficiently, indicating that it is a viable alternative when selecting ensemble classifiers and indicating that the non-linear fusion of decision level outputs offered by the FI provides expected potential and warrants further study

    The d'-Dibaryon in the Nonrelativistic Quark Model

    Get PDF
    The narrow peak recently found in various pionic double charge exchange (DCX) cross sections can be explained by the assumption of a universal resonance at 2065 MeV, called d'. We calculate the mass of a six-quark system with J^P=0^-, T=0 quantum numbers employing a cluster model and a shell model basis to diagonalize the nonrelativistic quark model Hamiltonian.Comment: 7 pages, Latex, 2 figures, invited talk at 6th Int. Symp. on Mesons and Nucleons 1995, Blaubeuren, Germany, 10-14 July 1995, to be published in pi-N Newsletter

    Pionic Decay of a Possible d'-Dibaryon

    Full text link
    The pionic decay of a possible d'-dibaryon in the process d' --> pi + N + N is studied in the microscopic quark shell model and with a single-quark transition operator describing the transition q --> pi + q'. For the d' with quantum numbers J^P=0^-, T=0, we employ a six-quark shell-model wave function with a spatial s^5p [51]_X-configuration with N=1 harmonic oscillator quanta. It is shown that the pionic decay width depends strongly on the mass and size of the d'. In the case that the calculated d' mass is close to the experimental one a small pionic decay width of 0.04 MeV is obtained. This is an order of magnitude smaller than the experimentally suggested value of 0.5 MeV. Two possibilities to improve the calculated width are suggested. The effect of the nonstatic correction term in the transition operator and the influence of the form factor at the decay vertex on the decay width are also discussed.Comment: Latex, 15 pages, 1 postscript figure, accepted for publication in Nucl. Phys.

    Theory of Phase Ordering Kinetics

    Full text link
    The theory of phase ordering dynamics -- the growth of order through domain coarsening when a system is quenched from the homogeneous phase into a broken-symmetry phase -- is reviewed, with the emphasis on recent developments. Interest will focus on the scaling regime that develops at long times after the quench. How can one determine the growth laws that describe the time-dependence of characteristic length scales, and what can be said about the form of the associated scaling functions? Particular attention will be paid to systems described by more complicated order parameters than the simple scalars usually considered, e.g. vector and tensor fields. The latter are needed, for example, to describe phase ordering in nematic liquid crystals, on which there have been a number of recent experiments. The study of topological defects (domain walls, vortices, strings, monopoles) provides a unifying framework for discussing coarsening in these different systems.Comment: To appear in Advances in Physics. 85 pages, latex, no figures. For a hard copy with figures, email [email protected]

    The Effect of Shear on Phase-Ordering Dynamics with Order-Parameter-Dependent Mobility: The Large-n Limit

    Full text link
    The effect of shear on the ordering-kinetics of a conserved order-parameter system with O(n) symmetry and order-parameter-dependent mobility \Gamma({\vec\phi}) \propto (1- {\vec\phi} ^2/n)^\alpha is studied analytically within the large-n limit. In the late stage, the structure factor becomes anisotropic and exhibits multiscaling behavior with characteristic length scales (t^{2\alpha+5}/\ln t)^{1/2(\alpha+2)} in the flow direction and (t/\ln t)^{1/2(\alpha+2)} in directions perpendicular to the flow. As in the \alpha=0 case, the structure factor in the shear-flow plane has two parallel ridges.Comment: 6 pages, 2 figure

    Multicomponent flow on curved surfaces: A vielbein lattice Boltzmann approach

    Get PDF
    We develop and implement a novel finite difference lattice Boltzmann scheme to study multicomponent flows on curved surfaces, coupling the continuity and Navier-Stokes equations with the Cahn-Hilliard equation to track the evolution of the binary fluid interfaces. The standard lattice Boltzmann method relies on regular Cartesian grids, which makes it generally unsuitable to study flow problems on curved surfaces. To alleviate this limitation, we use a vielbein formalism to write down the Boltzmann equation on an arbitrary geometry, and solve the evolution of the fluid distribution functions using a finite difference method. Focussing on the torus geometry as an example of a curved surface, we demonstrate drift motions of fluid droplets and stripes embedded on the surface of such geometries. Interestingly, they migrate in opposite directions: fluid droplets to the outer side while fluid stripes to the inner side of the torus. For the latter we demonstrate that the global minimum configuration is unique for small stripe widths, but it becomes bistable for large stripe widths. Our simulations are also in agreement with analytical predictions for the Laplace pressure of the fluid stripes, and their damped oscillatory motion as they approach equilibrium configurations, capturing the corresponding decay timescale and oscillation frequency. Finally, we simulate the coarsening dynamics of phase separating binary fluids in the hydrodynamics and diffusive regimes for tori of various shapes, and compare the results against those for a flat two-dimensional surface. Our finite difference lattice Boltzmann scheme can be extended to other surfaces and coupled to other dynamical equations, opening up a vast range of applications involving complex flows on curved geometries

    Exchange Currents in Photoproduction of Baryon Resonances

    Full text link
    We calculate photoexcitation amplitudes for several nucleon and delta resonances. We use a chiral quark model including two-body exchange currents. The two-body currents give important contributions. For the delta (1232) and the D13 (1520) we observe that the individual exchange current contributions considerably cancel each other while in the case of the Roper resonance and the S11 (1535) we get a reinforcement of the two-body amplitudes. In comparison with present experimental data, we obtain both for the S11 (1535) and for the Roper resonance an improvement with respect to the impulse approximation.Comment: 9 pages, 1 figur
    • ā€¦
    corecore