437 research outputs found

    Automated Markerless Extraction of Walking People Using Deformable Contour Models

    No full text
    We develop a new automated markerless motion capture system for the analysis of walking people. We employ global evidence gathering techniques guided by biomechanical analysis to robustly extract articulated motion. This forms a basis for new deformable contour models, using local image cues to capture shape and motion at a more detailed level. We extend the greedy snake formulation to include temporal constraints and occlusion modelling, increasing the capability of this technique when dealing with cluttered and self-occluding extraction targets. This approach is evaluated on a large database of indoor and outdoor video data, demonstrating fast and autonomous motion capture for walking people

    A smart environment for biometric capture

    No full text
    The development of large scale biometric systems require experiments to be performed on large amounts of data. Existing capture systems are designed for fixed experiments and are not easily scalable. In this scenario even the addition of extra data is difficult. We developed a prototype biometric tunnel for the capture of non-contact biometrics. It is self contained and autonomous. Such a configuration is ideal for building access or deployment in secure environments. The tunnel captures cropped images of the subject's face and performs a 3D reconstruction of the person's motion which is used to extract gait information. Interaction between the various parts of the system is performed via the use of an agent framework. The design of this system is a trade-off between parallel and serial processing due to various hardware bottlenecks. When tested on a small population the extracted features have been shown to be potent for recognition. We currently achieve a moderate throughput of approximate 15 subjects an hour and hope to improve this in the future as the prototype becomes more complete

    Simplifying transformations for nonlinear systems: Part II, statistical analysis of harmonic cancellation

    Get PDF
    The first paper in this short sequence described the idea of a simplifying transformation and applied the concept to a numerical optimisation-based variant of normal form analysis. The idea of the numerical normal form transformation was simply to eliminate or reduce the contribution of a pre-defined set of harmonics in the system response. It was shown that reducing the defined harmonics could lead to amplification of other components of the response. The idea of the current paper is to conduct a Monte Carlo worst-case analysis to investigate how badly unconstrained harmonics might be amplified by the optimisation

    Radio observations of the cool gas, dust, and star formation in the first galaxies

    Full text link
    We summarize cm through submm observations of the host galaxies of z ~ 6 quasars. These observations reveal the cool molecular gas (the fuel for star formation), the warm dust (heated by star formation), the fine structure line emission (tracing the CNM and PDRs), and the synchrotron emission. Our results imply active star formation in ~ 30% of the host galaxies, with star formation rates ~ 10^3 M_sun/year, and molecular gas masses ~ 10^10 M_sun. Imaging of the [CII] emission from the most distant quasar reveals a 'maximal starburst disk' on a scale ~ 1.5 kpc. Gas dynamical studies suggest a departure of these galaxies from the low-z M_{BH} -- M_{bulge} relation, with the black holes being, on average, 15 times more massive than expected. Overall, we are witnessing the co-eval formation of massive galaxies and supermassive black holes within 1 Gyr of the Big Bang.Comment: First Stars and Galaxies: Challenges in the Next Decade, AIP, 2010; Austin TX (eds Whelan, Bromm, Yoshida); 7 page

    A Meta-Learning Approach to Population-Based Modelling of Structures

    Full text link
    A major problem of machine-learning approaches in structural dynamics is the frequent lack of structural data. Inspired by the recently-emerging field of population-based structural health monitoring (PBSHM), and the use of transfer learning in this novel field, the current work attempts to create models that are able to transfer knowledge within populations of structures. The approach followed here is meta-learning, which is developed with a view to creating neural network models which are able to exploit knowledge from a population of various tasks to perform well in newly-presented tasks, with minimal training and a small number of data samples from the new task. Essentially, the method attempts to perform transfer learning in an automatic manner within the population of tasks. For the purposes of population-based structural modelling, the different tasks refer to different structures. The method is applied here to a population of simulated structures with a view to predicting their responses as a function of some environmental parameters. The meta-learning approach, which is used herein is the model-agnostic meta-learning (MAML) approach; it is compared to a traditional data-driven modelling approach, that of Gaussian processes, which is a quite effective alternative when few data samples are available for a problem. It is observed that the models trained using meta-learning approaches, are able to outperform conventional machine learning methods regarding inference about structures of the population, for which only a small number of samples are available. Moreover, the models prove to learn part of the physics of the problem, making them more robust than plain machine-learning algorithms. Another advantage of the methods is that the structures do not need to be parametrised in order for the knowledge transfer to be performed

    Model selection and parameter estimation in structural dynamics using approximate Bayesian computation

    Get PDF
    This paper will introduce the use of the approximate Bayesian computation (ABC) algorithm for model selection and parameter estimation in structural dynamics. ABC is a likelihood-free method typically used when the likelihood function is either intractable or cannot be approached in a closed form. To circumvent the evaluation of the likelihood function, simulation from a forward model is at the core of the ABC algorithm. The algorithm offers the possibility to use different metrics and summary statistics representative of the data to carry out Bayesian inference. The efficacy of the algorithm in structural dynamics is demonstrated through three different illustrative examples of nonlinear system identification: cubic and cubic-quintic models, the Bouc-Wen model and the Duffing oscillator. The obtained results suggest that ABC is a promising alternative to deal with model selection and parameter estimation issues, specifically for systems with complex behaviours

    Hearing voices: A narrative analysis of the senate inquiry into the social and economic impacts of rural wind farms

    Get PDF
    This is a preliminary examination of the public debate initiated as a result of the rapid expansion of wind farms in rural spaces. The study is based on a sample of submissions to the Senate Inquiry, The Social and Economic Impact of Rural Wind Farms (2011). Using a narrative analysis (Riessman 2008), the study identifies the issues raised in support of, or opposition to, wind farm developments in south-west Victoria. Narratives of personal loss or personal gain and by extension, community gain, were used to frame the stories. The narratives of loss struggled to connect to a contemporary public discourse and were as a result marginalised. The narratives of gain were found to link more successfully to themes with national and international currency that allowed the narratives to assume a 'just' stance. This study may be useful for others who engage, communicate and negotiate in the context of further wind farm developments

    On digital twins, mirrors and virtualisations

    Get PDF
    A powerful new idea in the computational representation of structures is that of the digital twin. The concept of the digital twin emerged and developed over the last two decades, and has been identified by many industries as a highly-desired technology. The current situation is that individual companies often have their own definitions of a digital twin, and no clear consensus has emerged. In particular, there is no current mathematical formulation of a digital twin. A companion paper to the current one will attempt to present the essential components of the desired formulation. One of those components is identified as a rigorous representation theory of models, how they are validated, and how validation information can be transferred between models. The current paper will outline the basic ingredients of such a theory, based on the introduction of two new concepts: mirrors and virtualisations. The paper is not intended as a passive wish-list; it is intended as a rallying call. The new theory will require the active participation of researchers across a number of domains including: pure and applied mathematics, physics, computer science and engineering. The paper outlines the main objects of the theory and gives examples of the sort of theorems and hypotheses that might be proved in the new framework

    A new twist to an old story: HE 0450-2958, and the ULIRG\to (optically bright QSO) transition hypothesis

    Full text link
    We report on interferometric imaging of the CO J=1--0 and J=3--2 line emission from the controversial QSO/galaxy pair HE 0450--2958. {\it The detected CO J=1--0 line emission is found associated with the disturbed companion galaxy not the luminous QSO,} and implies Mgal(H2)(12)×1010M\rm M_{gal}(H_2)\sim (1-2)\times 10^{10} M_{\odot}, which is \ga 30% of the dynamical mass in its CO-luminous region. Fueled by this large gas reservoir this galaxy is the site of an intense starburst with SFR370Myr1\rm SFR\sim 370 M_{\odot} yr^{-1}, placing it firmly on the upper gas-rich/star-forming end of Ultra Luminous Infrared Galaxies (ULIRGs, LIR>1012L\rm L_{IR}>10^{12} L_{\odot}). This makes HE 0450--2958 the first case of extreme starburst and powerful QSO activity, intimately linked (triggered by a strong interaction) but not coincident. The lack of CO emission towards the QSO itself renews the controversy regarding its host galaxy by making a gas-rich spiral (the typical host of Narrow Line Seyfert~1 AGNs) less likely. Finally, given that HE 0450--2958 and similar IR-warm QSOs are considered typical ULIRG\to (optically bright QSO) transition candidates, our results raise the possibility that some may simply be {\it gas-rich/gas-poor (e.g. spiral/elliptical) galaxy interactions} which ``activate'' an optically bright unobscured QSO in the gas-poor galaxy, and a starburst in the gas-rich one. We argue that such interactions may have gone largely unnoticed even in the local Universe because the combination of tools necessary to disentagle the progenitors (high resolution and S/N optical {\it and} CO imaging) became available only recently.Comment: 25 pages, 5 figures, accepted for publication by The Astrophysical Journa
    corecore