579 research outputs found

    True ternary fission of superheavy nuclei

    Full text link
    We found that a true ternary fission with formation of a heavy third fragment (a new type of radioactivity) is quite possible for superheavy nuclei due to the strong shell effects leading to a three-body clusterization with the two doubly magic tin-like cores. The simplest way to discover this phenomenon in the decay of excited superheavy nuclei is a detection of two tin-like clusters with appropriate kinematics in low-energy collisions of medium mass nuclei with actinide targets. The three-body quasi-fission process could be even more pronounced for giant nuclear systems formed in collisions of heavy actinide nuclei. In this case a three-body clusterization might be proved experimentally by detection of two coincident lead-like fragments in low-energy U+U collisions.Comment: 4 pages, 7 figure

    The Reasonableness of Argumentation from Expert Opinion in Medical Discussions: Institutional Safeguards for the Quality of Shared Decision Making

    Get PDF
    The ideal of shared decision making starts from the assumption that physicians and patients are able to take a joint decision as to what is the best treatment. However, since medical consultations are to be viewed as discussions between an expert and a layman, in practice it will often be the case that the patient has to rely on the physician’s expertise. In this article we examine the extent to which the Dutch laws, guidelines and professional conventions within the medical domain positively influence the quality of the process of shared decision making, even in cases where the physician makes use of an argument from expert opinion. To this end, we will chart some of the most important institutional safeguards for the quality of medical decisions and analyze how these safeguards relate to the critical questions associated with the argument scheme of argumentation from expert opinion

    Microscopic Description of Nuclear Fission Dynamics

    Full text link
    We discuss possible avenues to study fission dynamics starting from a time-dependent mean-field approach. Previous attempts to study fission dynamics using the time-dependent Hartree-Fock (TDHF) theory are analyzed. We argue that different initial conditions may be needed to describe fission dynamics depending on the specifics of the fission phenomenon and propose various approaches towards this goal. In particular, we provide preliminary calculations for studying fission following a heavy-ion reaction using TDHF with a density contraint. Regarding prompt muon-induced fission, we also suggest a new approach for combining the time-evolution of the muonic wave function with a microscopic treatment of fission dynamics via TDHF

    An evaporation-based model of thermal neutron induced ternary fission of plutonium

    Get PDF
    Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~1.2 MeV and ~10^-22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission.Comment: 25 pages, 12 figures, accepted for publication in IJMP

    Constructing a Periodic Table of Arguments

    Get PDF
    The existing classifications of arguments are unsatisfying in a number of ways. This paper proposes an alternative in the form of a Periodic Table of Arguments. The newly developed table can be used as a systematic and comprehensive point of reference for the analysis, evaluation and production of argumentative discourse as well as for various kinds of empirical and computational research in the field of argumentation theory

    The minimal N=4 no-scale model from generalized dimensional reduction

    Full text link
    We consider the generalized dimensional reduction of pure ungauged N=4, D=5 supergravity, where supersymmetry is spontaneously broken to N=2 or N=0 with identically vanishing scalar potential. We explicitly construct the resulting gauged D=4 theory coupled to a single vector multiplet, which provides the minimal N=4 realization of a no-scale model. We discuss its relation with the standard classification of N=4 gaugings, extensions to non-compact twists and to higher dimensions, the N=2 theories obtained via consistent Z_2 orbifold projections and prospects for further generalizations.Comment: 1+28 pages, no figures, JHEP3 LaTeX, published versio

    Fission studies with 140 MeV α\bm{\alpha}-Particles

    Full text link
    Binary fission induced by 140 MeV α\alpha-particles has been measured for nat^{\rm nat}Ag, 139^{139}La, 165^{165}Ho and 197^{197}Au targets. The measured quantities are the total kinetic energies, fragment masses, and fission cross sections. The results are compared with other data and systematics. A minimum of the fission probability in the vicinity Z2/A=24Z^2/A=24 is observed.Comment: 4 figures, 2 table

    Gauged N=4 supergravities

    Full text link
    We present the gauged N=4 (half-maximal) supergravities in four and five spacetime dimensions coupled to an arbitrary number of vector multiplets. The gaugings are parameterized by a set of appropriately constrained constant tensors, which transform covariantly under the global symmetry groups SL(2) x SO(6,n) and SO(1,1) x SO(5,n), respectively. In terms of these tensors the universal Lagrangian and the Killing Spinor equations are given. The known gaugings, in particular those originating from flux compactifications, are incorporated in the formulation, but also new classes of gaugings are found. Finally, we present the embedding chain of the five dimensional into the four dimensional into the three dimensional gaugings, thereby showing how the deformation parameters organize under the respectively larger duality groups.Comment: 36 pages, v2: references added, comments added, v3: published version, references added, typos corrected, v4: sign mistakes in footnote 4 and equation (2.13) correcte
    corecore