9 research outputs found

    Potential metabolic resistance mechanisms to ivermectin in Anopheles gambiae: a synergist bioassay study.

    Get PDF
    BACKGROUND Despite remarkable success obtained with current malaria vector control strategies in the last 15 years, additional innovative measures will be needed to achieve the ambitious goals for malaria control set for 2030 by the World Health Organization (WHO). New tools will need to address insecticide resistance and residual transmission as key challenges. Endectocides such as ivermectin are drugs that kill mosquitoes which feed on treated subjects. Mass administration of ivermectin can effectively target outdoor and early biting vectors, complementing the still effective conventional tools. Although this approach has garnered attention, development of ivermectin resistance is a potential pitfall. Herein, we evaluate the potential role of xenobiotic pumps and cytochrome P450 enzymes in protecting mosquitoes against ivermectin by active efflux and metabolic detoxification, respectively. METHODS We determined the lethal concentration 50 for ivermectin in colonized Anopheles gambiae; then we used chemical inhibitors and inducers of xenobiotic pumps and cytochrome P450 enzymes in combination with ivermectin to probe the mechanism of ivermectin detoxification. RESULTS Dual inhibition of xenobiotic pumps and cytochromes was found to have a synergistic effect with ivermectin, greatly increasing mosquito mortality. Inhibition of xenobiotic pumps alone had no effect on ivermectin-induced mortality. Induction of xenobiotic pumps and cytochromes may confer partial protection from ivermectin. CONCLUSION There is a clear pathway for development of ivermectin resistance in malaria vectors. Detoxification mechanisms mediated by cytochrome P450 enzymes are more important than xenobiotic pumps in protecting mosquitoes against ivermectin

    Detection of Plasmodium falciparum infected Anopheles gambiae using near-infrared spectroscopy

    Get PDF
    Background: Large-scale surveillance of mosquito populations is crucial to assess the intensity of vector-borne disease transmission and the impact of control interventions. However, there is a lack of accurate, cost-effective and high-throughput tools for mass-screening of vectors. Methods: A total of 750 Anopheles gambiae (Keele strain) mosquitoes were fed Plasmodium falciparum NF54 gametocytes through standard membrane feeding assay (SMFA) and afterwards maintained in insectary conditions to allow for oocyst (8 days) and sporozoite development (14 days). Thereupon, each mosquito was scanned using near infra-red spectroscopy (NIRS) and processed by quantitative polymerase chain reaction (qPCR) to determine the presence of infection and infection load. The spectra collected were randomly assigned to either a training dataset, used to develop calibrations for predicting oocyst- or sporozoite-infection through partial least square regressions (PLS); or to a test dataset, used for validating the calibration’s prediction accuracy. Results: NIRS detected oocyst- and sporozoite-stage P. falciparum infections with 88% and 95% accuracy, respectively. This study demonstrates proof-of-concept that NIRS is capable of rapidly identifying laboratory strains of human malaria infection in African mosquito vectors. Conclusions: Accurate, low-cost, reagent-free screening of mosquito populations enabled by NIRS could revolutionize surveillance and elimination strategies for the most important human malaria parasite in its primary African vector species. Further research is needed to evaluate how the method performs in the field following adjustments in the training datasets to include data from wild-caught infected and uninfected mosquitoes

    Ancient diversity in host-parasite interaction genes in a model parasitic nematode

    Get PDF
    Abstract Host-parasite interactions exert strong selection pressures on the genomes of both host and parasite. These interactions can lead to negative frequency-dependent selection, a form of balancing selection that is hypothesised to explain the high levels of polymorphism seen in many host immune and parasite antigen loci. Here, we sequence the genomes of several individuals of Heligmosomoides bakeri, a model parasite of house mice, and Heligmosomoides polygyrus, a closely related parasite of wood mice. Although H. bakeri is commonly referred to as H. polygyrus in the literature, their genomes show levels of divergence that are consistent with at least a million years of independent evolution. The genomes of both species contain hyper-divergent haplotypes that are enriched for proteins that interact with the host immune response. Many of these haplotypes originated prior to the divergence between H. bakeri and H. polygyrus, suggesting that they have been maintained by long-term balancing selection. Together, our results suggest that the selection pressures exerted by the host immune response have played a key role in shaping patterns of genetic diversity in the genomes of parasitic nematodes

    Genetic variation at the Cyp6m2 putative insecticide resistance locus in Anopheles gambiae and Anopheles coluzzii

    No full text
    Auteurs : The Anopheles gambiae 1000 Genomes Consortium, (Michael Fontaine)International audienceThe emergence of insecticide resistance is a major threat to malaria control programmes in Africa, with many different factors contributing to insecticide resistance in its vectors, Anopheles mosquitoes. CYP6M2 has previously been recognized as an important candidate in cytochrome P450-mediated detoxification in Anopheles . As it has been implicated in resistance against pyrethroids, organochlorines and carbamates, its broad metabolic activity makes it a potential agent in insecticide cross-resistance. Currently, allelic variation within the Cyp6m2 gene remains unknown. Methods Here, Illumina whole-genome sequence data from Phase 2 of the Anopheles gambiae 1000 Genomes Project (Ag1000G) was used to examine genetic variation in the Cyp6m2 gene across 16 populations in 13 countries comprising Anopheles gambiae and Anopheles coluzzii mosquitoes . To identify whether these alleles show evidence of selection either through potentially modified enzymatic function or by being linked to variants that change the transcriptional profile of the gene, hierarchical clustering of haplotypes, linkage disequilibrium, median joining networks and extended haplotype homozygosity analyses were performed. Results Fifteen missense biallelic substitutions at high frequency (defined as > 5% frequency in one or more populations) are found, which fall into five distinct haplotype groups that carry the main high frequency variants: A13T, D65A, E328Q, Y347F, I359V and A468S. Despite consistent reports of Cyp6m2 upregulation and metabolic activity in insecticide resistant Anophelines, no evidence of directional selection is found occurring on these variants or on the haplotype clusters in which they are found. Conclusion These results imply that emerging resistance associated with Cyp6m2 is potentially driven by distant regulatory loci such as transcriptional factors rather than by its missense variants, or that other genes are playing a more significant role in conferring metabolic resistance

    Correction to: Detection of Plasmodium falciparum infected Anopheles gambiae using near-infrared spectroscopy

    No full text
    Following publication of the original article [1], it was flagged that the name of the author Lisa Ranford-Cartwright had been (incorrectly) given as ‘Lisa-Ranford Cartwright

    Replication Data for: Near infrared spectra and calibration for detection of malaria infection in Anopheles gambiae (Keele strain)

    No full text
    Anopheles gambiae (Keele Strain) mosquitoes were infected in the lab with cultured Plasmodium falciparum gametocytes (PfN54) to generate oocyst and sporozoite infected vectors. Controls, uninfected mosquitoes, were generated by feeding mosquitoes on the same blood after gametogenesis had occurred which was triggered by dropping the temperature in the glass feeders to below 30 degrees Celsius. After feeding, mosquitoes were kept for 7 and 14 days to allow parasite development after which each individual mosquito was scanned with near infrared spectroscopy (NIRS) and stored at -20 until processed by qPCR (quantitative polymerase chain reaction) for confirmation of infection and quantification of parasite load. The data shared is composed of all the spectra that were collected (in .spc format for GRAMS IQ software) labeled with a unique identifier which links to the STATA files where the mean number of parasite genomes and age for each individual mosquito are listed. The files used to generate the calibration through partial least square (PLS) regression on GRAMS IQ have also been shared (.tfdx) along with the calibration file (.cal) for uploading on IQ Predict software. We have also shared the prediction outputs of the independent samples that were predicted with the calibrations here developed.</p

    A chromosomal reference genome sequence for the malaria mosquito, Anopheles moucheti, Evans, 1925

    No full text
    International audienceWe present a genome assembly from an individual male Anopheles moucheti (the malaria mosquito; Arthropoda; Insecta; Diptera; Culicidae), from a wild population in Cameroon. The genome sequence is 271 megabases in span. The majority of the assembly is scaffolded into three chromosomal pseudomolecules with the X sex chromosome assembled. The complete mitochondrial genome was also assembled and is 15.5 kilobases in length
    corecore