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METHODOLOGY

Detection of Plasmodium falciparum 
infected Anopheles gambiae using near‑infrared 
spectroscopy
Marta F. Maia1,2,3,4*  , Melissa Kapulu3,4, Michelle Muthui3, Martin G. Wagah3,5, Heather M. Ferguson6, 
Floyd E. Dowell7, Francesco Baldini6† and Lisa‑Ranford Cartwright6†

Abstract 

Background:  Large-scale surveillance of mosquito populations is crucial to assess the intensity of vector-borne 
disease transmission and the impact of control interventions. However, there is a lack of accurate, cost-effective and 
high-throughput tools for mass-screening of vectors.

Methods:  A total of 750 Anopheles gambiae (Keele strain) mosquitoes were fed Plasmodium falciparum NF54 game‑
tocytes through standard membrane feeding assay (SMFA) and afterwards maintained in insectary conditions to allow 
for oocyst (8 days) and sporozoite development (14 days). Thereupon, each mosquito was scanned using near infra-
red spectroscopy (NIRS) and processed by quantitative polymerase chain reaction (qPCR) to determine the presence 
of infection and infection load. The spectra collected were randomly assigned to either a training dataset, used to 
develop calibrations for predicting oocyst- or sporozoite-infection through partial least square regressions (PLS); or to 
a test dataset, used for validating the calibration’s prediction accuracy.

Results:  NIRS detected oocyst- and sporozoite-stage P. falciparum infections with 88% and 95% accuracy, respec‑
tively. This study demonstrates proof-of-concept that NIRS is capable of rapidly identifying laboratory strains of 
human malaria infection in African mosquito vectors.

Conclusions:  Accurate, low-cost, reagent-free screening of mosquito populations enabled by NIRS could revolution‑
ize surveillance and elimination strategies for the most important human malaria parasite in its primary African vector 
species. Further research is needed to evaluate how the method performs in the field following adjustments in the 
training datasets to include data from wild-caught infected and uninfected mosquitoes.

Keywords:  Near infrared spectroscopy, Malaria, Anopheles gambiae, Plasmodium falciparum, Sporozoite, Oocyst, 
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Background
Malaria is holding back development in endemic coun-
tries and remains one of the leading causes of death in 
children under 5  years-old in sub-Saharan Africa [1–3]. 
During the past decade, the large-scale roll-out of long-
lasting insecticide-treated nets and indoor residual 

spraying across Africa has resulted in a substantial reduc-
tion in malaria cases [4]. The Global Technical Strategy 
for Malaria 2016–2030 of the World Health Organi-
zation (WHO) seeks to reduce malaria incidence and 
related mortality by at least 90% and to eliminate the dis-
ease in a minimum of 35 countries [1]. These bold goals 
will require new interventions that can address residual 
malaria transmission as well as new tools to better moni-
tor their impact on vector-borne disease transmission. 
Mosquito surveillance is a cornerstone of the control of 
malaria and other vector-borne diseases [5].
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However, presently, there is no high-throughput, cost-
efficient method to identify Plasmodium infection and 
infectiousness in mosquitoes. Molecular methods such as 
ELISA and PCR are used to determine parasite infection, 
but these are expensive and laborious [6–8], challeng-
ing resource-poor countries with few funds and limited 
access to reagents and equipment, and thus are unsuit-
able for large-scale surveillance. A further complication 
is that typically only 1–2% of mosquitoes may be infected 
with transmission stage parasites (sporozoites), meaning 
that very large sample sizes must be tested to accurately 
quantify site and time-specific estimates of mosquito 
infection rates as will be required to assess progress 
towards malaria elimination [9].

Recent advances indicate several mosquito traits can be 
accurately identified through analysis of their tissues with 
near infrared spectroscopy (NIRS) [10–13]. This method 
involves the passing of visible and NIR light (wavelength 
400–2500 nanometres) through the whole or part of 
a mosquito specimen and the collection of an absorb-
ance spectrum instantly, without destroying the sample. 
Changes in spectral peaks at different wavelengths repre-
sent how intensely different molecules absorb light, and 
thus NIR spectra of mosquitoes are determined by the bio-
chemical composition of their tissues, which are known to 
differ according to age [14, 15], species [16, 17], microbi-
ome [18], physiological stage [19, 20], and pathogen infec-
tion status [20, 21]. Differences in NIR spectra have been 
used to distinguish young (e.g. < 7  days old) from older 
(7 + days old) malaria vectors, to identify morphologi-
cally identical Anopheles sibling species, and to detect the 
presence of the endosymbiont Wolbachia in Aedes aegypti 
mosquitoes [10–12]. Most recently, NIRS has been used 
to detect rodent malaria infections in laboratory-reared 
Anopheles stephensi [22] and Zika virus in Aedes aegypti 
[23]. The use of NIRS has not previously been investigated 
on human malaria infected mosquitoes. The presence 
of the parasite-specific proteins and other biochemical 
changes induced by malaria infection in the vector may 
permit these to be distinguished from uninfected mosqui-
toes using spectral tools such as NIRS [24, 25].

Parasite infection in the mosquito can be found in two 
main forms defined by their parasite development stages: 
midgut oocyst infections occurring around 2–8  days 
after feeding on infectious blood; and sporozoite infec-
tions occurring 9–14  days after infection, character-
ized by the release of sporozoites from oocysts into the 
mosquito’s haemocoel and salivary glands, enabling the 
mosquito to infect the next human host. Given the dif-
ferent nature of the two infection stages the NIRS profile 
of an oocyst-infected mosquito may not be the same as a 
sporozoite-infected one. For this reason, this study aimed 
to test whether NIRS could successfully identify oocyst 

and sporozoite infections in Anopheles vectors, and esti-
mate if the method’s prediction accuracy is dependent on 
the intensity of infection in the mosquito.

This paper presents the successful application of NIRS 
to differentiate Plasmodium falciparum-infected mos-
quitoes from uninfected mosquitoes, providing the first 
evidence of detection of human malaria infections in 
the An. gambiae mosquito vector by this cost-effective, 
fast and reagent-free method. The development of a tool 
such as NIRS to measure malaria infection rates in mos-
quito populations would be of great service to malaria 
pre-elimination efforts as it would allow the processing 
of large numbers of mosquitoes increasing the accuracy 
of the estimates of human exposure to malaria infection 
across different regions, and advancing malaria vector 
surveillance in Africa.

Methods
Mosquitoes
Mosquitoes from a colony of An. gambiae sensu stricto 
(Keele line) [26] were reared under standard insectary con-
ditions (26 ± 1 °C, 80% humidity, 12 h light:12 h dark cycle) 
at the University of Glasgow, Scotland, UK. Larvae were fed 
on Tetramin tropical flakes and Tetra Pond Pellets (Tetra 
Ltd, UK). Pupae were transferred into cages for adult emer-
gence. Adult mosquitoes were fed ad  libitum on 5% glu-
cose solution containing 0.05% (w/v) 4-aminobenzoic acid 
(PABA). SMFA was done with 3–6 days old mosquitoes.

Parasite culture and standard membrane feeding assays 
(SMFA)
Plasmodium falciparum (NF54) parasites were cultured 
using standard methodology to produce infectious game-
tocytes [27], using human blood and serum obtained 
from the Glasgow and West of Scotland Blood Transfu-
sion Service. Standard membrane feeding assays (SMFA) 
were conducted on three different occasions using game-
tocytes produced in vitro: the first SMFA was done with 
a high gametocyte density (approx. 1% gametocytes) and 
the two-subsequent feeds with a lower density (~ 0.1% 
gametocytes) to produce more uninfected mosquitoes. 
For each SMFA, 300 female An. gambiae (Keele line) 
3–6 days post emergence were distributed in pairs into 6 
cups of 50 mosquitoes each. In the first SMFA, mosqui-
toes were 3, 4 and 5 days old, in the second SMFA they 
were 4, 5 and 6 days old and in the third SMFA mosqui-
toes were 3 (2 pairs of cups) and 4 days old. One cup of 
each pair was offered blood with infectious gametocytes 
and allowed to feed for 20 min. The temperature of the 
membrane feeders was then reduced to below 30  °C 
for 30 min to allow all mature gametocytes to complete 
gametogenesis [28]. The remaining cups of mosquitoes 
were then allowed to feed on the same blood, to produce 
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control mosquitoes with zero infection rates, and thus 
obtain a comparable control sample differing only in the 
complete absence of parasite infection.

Near infrared spectra collection and data analysis
After feeding, the blood-fed mosquitoes in each pot were 
maintained for 14  days under insectary conditions and 
examined for oocyst and sporozoite development on day 
7 and 14  days post-infection, respectively. Mosquitoes 
were killed using chloroform vapour before collecting 
near infrared absorbance spectra from each individual 
mosquito without any further processing, using a Lab-
spec 4i NIR spectrometer with an internal 18.6 W light 
source (ASD Inc, Longmont, CO) and ASD software 
RS3 per established protocols [10], but using a 3.2 mm-
diameter bifurcated fibre-optic probe which contained a 
single 600 micron collection fibre surrounded by six 600 
micron illumination fibres. The probe was placed 2.4 mm 
from a spectralon plate onto which the mosquitoes were 
placed for scanning. All mosquitoes were scanned on 
their cephalothorax. Spectra between 500 and 2400  nm 
were analysed through leave-one-out cross validations 
(LOOCV) using partial least square (PLS) regression 
in GRAMS Plus/IQ software (Thermo Galactic, Salem, 
NH). After scanning, each mosquito carcass was stored 
individually at − 80  °C in ATL lysis buffer (QIAGEN) 
until DNA extraction, to perform qPCR to determine the 
infection status of the mosquito.

DNA extraction and quantitative real‑time polymerase 
chain reaction (qPCR)
DNA was extracted using Qiagen DNeasy Blood & 
Tissue® DNA extraction kits from mosquito abdomens 
(for mosquitoes analysed 7 days post infectious feed) and 
whole mosquitoes (for mosquitoes killed 14  days post 
infectious feed) and eluted in 50 µL of water. A 20 µL ali-
quot of the 50  µL of extracted DNA for each mosquito 
was transferred to individual wells of DNAstable® 96 well 
plates (Sigma-Aldrich) and allowed to air dry at room 
temperature. The plates were shipped to KEMRI Well-
come Trust (Killifi, Kenya) for qPCR analysis. Samples 
were reconstituted in 20  µL of DNAse-free water and 
P. falciparum genome numbers present were quantified 
by qPCR [29]. Quantification reactions were performed 
in 15 μL volumes, containing 1.2 μL of 10 mM forward 
and reverse primers (377F: 5′ ACT​CCA​GAA​GAA​GAA​
GAG​CAAGC-3′; 377R: 5′-TTC​ATC​AGT​AAA​AAA​AGA​
ATC​GTC​ATC-3′); 7.5 μL of SYBR® Green PCR Mas-
ter Mix, 1.1 μL of DNAse-free water and 4 μL of sample 
DNA, using an Applied Biosystems 7500 Real-Time PCR 
System. The cycling profile comprised an initial denatur-
ation of 95 °C for 900 s (holding stage) and then 40 ampli-
fication cycles of denaturation 95  °C for 30  s (seconds), 

annealing 55 °C for 20 s and extension 68 °C for 30 s. At 
the end of amplification, melt curves were produced with 
15 s denaturation at 95 °C, followed by 60 s at 60 °C, 30 s 
at 95  °C and 15  s at 60  °C. Parasite load was estimated 
for each sample by comparison with the standard curve 
drawn from the DNA standards using Applied Biosys-
tems 7500 software v2.0.6. Samples which amplified after 
38 cycles, or which showed a shift in melt curve or two 
melt curve peaks were excluded.

DNA extracted from uninfected mosquitoes (abdo-
mens and cephalothorax) were used as negative controls, 
in addition to negative controls with no DNA. Standard 
curves were generated for each qPCR run using a 5-point 
tenfold serial dilution of DNA extracted from asexual 
3D7 cultures synchronized to ring stage, starting with 
100,000 parasites/μL (100,000 parasites; 10,000 parasites; 
1000 parasites; 100 parasites and 10 parasites), run in 
duplicate.

Analysis using PLS leave‑one‑out cross‑validations 
(LOOCV)
The results from the qPCR were used to identify which 
individual mosquitoes had confirmed oocyst and sporo-
zoite infections and their respective infection load. This 
information was then specified to each spectrum and 
these were randomly assigned to either a training data-
set or a test dataset whilst ensuring the same proportion 
of different mosquito ages was found in each dataset. All 
uninfected mosquitoes were from the group that had 
been fed blood without viable gametocytes.

The P. falciparum detection model was trained and 
tested according to previously published methods [10] 
using partial least square (PLS) regression to develop a 
calibration based on a training data set, which was then 
used to predict the infection status of a separate set of 
samples contained in the test dataset, and therewith vali-
date the prediction accuracy of the calibration. Leave-
one-out cross validation (LOOCV) using partial least 
square regressions (PLS) were used to analyse the train-
ing dataset and to determine if NIR spectra of uninfected 
mosquitoes were distinct from P. falciparum-infected 
mosquitoes. LOOCV is a k-fold cross validation, with k 
equal to n, the number of spectra in a training dataset. 
That means that n separate times, the function approxi-
mator is trained on all the data except for one point and a 
prediction is made for that point. Multiple LOOCV with 
base on the training dataset were used to develop a cali-
bration file which was then validated by testing its pre-
dictive accuracy on an independent test dataset.

Two separate LOOCV were run to investigate the pre-
diction accuracy of oocyst-infected vs. uninfected, and 
sporozoite-infected and uninfected mosquitoes respec-
tively. A total of 69 sporozoite-infected and 69 uninfected 
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mosquitoes that had been kept for 14  days post SMFA 
were used to generate a calibration file. The same was 
done using spectra from 121 oocyst-infected mosqui-
toes and 110 uninfected mosquitoes kept for 7 days post 
SMFA. The models were run on Grams IQ software 
(Thermo Galactic, Salem, NH) and a total of 12 latent 
factors were selected by visualizing the prediction resid-
ual error sum of squares (PRESS) curve, and choosing the 
minimum number of factors needed to reduce the pre-
diction error of the model without overfitting it. A latent 
factor is a standard term used to describe PLS models 
and does not directly translate as a peak or trough in NIR 
spectra. Latent variables are variables that are not directly 
observed but are rather inferred (through a mathematical 
model) from other variables that are observed (directly 
measured). A calibration file was generated on Grams IQ 
and loaded into IQPredict software to predict the infec-
tion status of the test dataset, composed of 69 sporozoite-
infected and 22 uninfected, and, 53 oocyst-infected and 
56 uninfected (Fig. 1). PLS scores were obtained based on 
the predicted probability of infection, with 1 = predicted 
as uninfected, 2 = predicted as infected and cut-off value 
of 1.5. Actual vs Predicted plots were drawn by plotting 
the actual constituent values (coded as 1 = uninfected 
and 2 = infected) on the x axis, and model predicted 
values on the y axis. Prediction values were generated 
according to previously published methods [10], values 
below 1.5 were considered to be predicted as uninfected 
and values equal to or above 1.5 predicted as infected.

Analysis of prediction accuracy
Sensitivity was calculated to estimate of the model’s abil-
ity to detect the presence of infection and specificity as 
the model’s ability to detect the absence of infection. 
Accuracy was calculated as the overall prediction ability 

of the model (Table  1). Sensitivity, specificity, accuracy 
and respective exact Clopper-Pearson confidence inter-
vals were calculated using MedCalc for Windows, ver-
sion 18.0 (MedCalc Software, Ostend, Belgium). Cohen’s 
kappa was calculated in STATA/IC Version 13 as a meas-
ure of inter-rate agreement between qPCR (reference 
test) and NIRS.

The PLS scores of the predicted independent samples 
were analyzed using generalized linear mixed-effects 
model in STATA/IC Version 13.1. The response variable 
investigated was the PLS score generated from the PLS 
calibration models. The effects of infection presence and 
infection intensity (number of parasite genomes) on the 
PLS prediction value were investigated. Given that the 
age of a mosquito may affect NIRS spectra and therewith 
the PLS score, mosquito age was included as a random 
effect in the model. Regression coefficients for each fac-
tor, confidence intervals and p-values were reported. 
Model selection was done based on the Akaike informa-
tion criterion (i.e. the lower the AIC value, the better the 
model).

Results
Experimental infections
Approximately 750 female An. gambiae (Keele line) [26] 
of different ages (3–6  days old) were offered a blood 

Fig. 1  Study flow chart showing number of spectra collected, infection status and random assignment of spectra to either training or test dataset

Table 1  Sensitivity, specificity and  accuracy as  measures 
of the performance of a binary classification test

TP True positives, TN true negative, FP false positive, FN false negatives

Sensitivity Specificity Accuracy

TP

TP+FN

TN

TN+FP

TP+TN

TP+TN+FP+FN
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meal containing NF54 gametocyte cultures in standard 
membrane-feeding assays (SMFAs) in three independent 
replicate experiments. Control (uninfected) mosquitoes 
were generated by feeding approximately 450 mosquitoes 
the same blood after gametogenesis was completed. Both 
groups were represented with mosquitoes of similar ages, 
between 3 and 6 days old (see Additional file 1). Mosqui-
toes were maintained for 7 and 14 days under insectary 
conditions to allow oocyst (D7) and sporozoite (D14) 
development, on each day of sampling live mosquitoes 
were removed, killed and immediately scanned using 
NIRS.

Mosquitoes fed on infectious blood were analysed by 
quantitative polymerase chain reaction (qPCR) for inten-
sity of infection. Additionally, 60 mosquitoes from the 
control groups (30 from feed 2 and 3, respectively) were 
also analysed by qPCR to confirm the absence of malaria 
infection. No mosquitoes from these control groups 
tested positive for infection.

The minimum number of parasite genomes detectable 
per mosquito was 10 parasite genomes/per μL of DNA 
extract, calculated from standard curves generated for 
each qPCR run using a 5-point tenfold serial dilution of 
DNA extracted from asexual 3D7 cultures synchronized 
to ring stage. This gave a threshold detection of ~ 500 par-
asite genomes per mosquito for the qPCR assay.

Near infrared spectra selection
A total of 634 An. gambiae (Keele strain) were scanned 
using NIRS (Table 2). DNA was extracted and analyzed 
for P. falciparum infection by qPCR as described above. 
Samples with inconclusive qPCR results or poor spectra 
quality were excluded (n = 72). Poor quality or outlier 
spectra were visually identified by comparing them to all 
other spectra, and spectra that were prominently flat or 
prominently noisy were excluded, as described elsewhere 
[10]. Thus, NIR absorbance spectra and respective infec-
tion status data from a final total of 562 mosquitoes were 

used to estimate the accuracy of NIRS for prediction of 
malaria infection (Fig. 1).

Model prediction accuracy
The relationship between spectra and infection was ana-
lyzed using partial least square regression (PLS). Train-
ing datasets were used to perform multiple leave-one-out 
cross validations (LOOCV) and develop two calibra-
tions, one for prediction of oocyst infection and another 
for prediction of sporozoite infection. The calibrations 
were then validated using test datasets composed of 
samples with unknown infection status that had not 
been included in the calibration’s training dataset. The 
number of factors used in the calibration was 12, deter-
mined from the prediction residual error sum of squares 
(PRESS) and regression coefficient plots (see Additional 
file 1). In the PLS model, a value of “1” was assigned to all 
the actual uninfected samples whereas a value of “2” was 
assigned to the actual infected mosquitoes (infection as 
defined by the qPCR results). The PLS calibration derived 
components used to transform the original spectra of 
each predicted independent sample into a PLS score; 
a score value of 1.5 was considered as the threshold for 
correct or incorrect classification, meaning any mosquito 
with PLS score below 1.5 was predicted as uninfected 
and equal or greater than 1.5 was predicted as infected. 
The PLS model showed that NIR spectra from both 
oocyst and sporozoite-infected mosquitoes were dis-
tinct from their counterpart uninfected mosquitoes with 
91.2% (86.7–94.5%) and 92.8% (87.1–96.5%) self-predic-
tion accuracy respectively (Figs. 2a and 3a). When tested 
on samples with unknown infections status that had not 
been included in the training dataset, the calibration 
maintained high sensitivity and specificity at both detect-
ing oocyst and sporozoite infection, with 87.7% (95% CI 
79.9–93.3%; Cohen’s kappa = 0.75)) and 94.5% (95% CI 
87.6–98.2%; Cohen’s kappa = 0.86) prediction accuracy 
respectively (Figs. 2b and 3b).

Table 2  Description of  the  gametocytaemia used for  each of  the  three standard membrane feeding assays (SMFA), 
number of days kept post blood feeding, number of mosquitoes processed by quantitative PCR (qPCR),  % prevalence, 
and the intensity of infection described as the median and interquartile range (IQR) of the number of parasite genomes 
per μl of DNA extract present in infected mosquitoes, excluding mosquitoes with no infection

SMFA Estimated 
gametocytaemia

Day post- 
infectious blood 
meal

No. mosquitoes 
tested
(n = 634)

Positive
(N = 423)

% prevalence 
of infection

Intensity of infection: median 
number of parasite genomes 
and IQR.

1 1% 7 175 105 60.0% 680 (283–1625)

14 n.d. n.d. n.d. n.d.

2 0.1% 7 104 73 70.2% 456 (67–2052)

14 99 47 47% 516 (211–6081)

3 0.1% 7 114 85 74.6% 2995 (3210–8881)

14 142 113 80% 10,114 (2540–29,145)
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Infection load and prediction accuracy
The parasite load in a mosquito is of epidemiological 
importance as there is evidence of a continual increase in 
transmission potential with increasing sporozoites num-
bers [30]. To test if the NIR prediction output scores were 
affected by parasite load, qPCR was used to estimate the 
relative number of parasite genomes in each infected 
mosquito (Table  3) and used to evaluate the calibration 
model’s accuracy.

The oocyst-infected mosquitoes in the test data set 
had a range of infection loads (Median: 1925 parasite 
genomes/μL of DNA extract, IQR: [295 to 4883]). Two 
oocyst-infected mosquitoes were misclassified as unin-
fected, both of which had relatively low infection loads 
(357 and 389 parasite genomes/μL of DNA extract) 
(Fig.  4a). Generalized linear mixed-effects models were 

used to investigate the effect of infection load and infec-
tion presence on the PLS scores (response variable) of 
the predicted samples. The age of the mosquitoes on 
the day of the infectious feed was included as a random 
effect. It was observed that the presence of oocyst infec-
tion influenced the NIRS prediction score (Coefficient: 
0.67; 95% CI 0.41 to 0.93; p < 0.001) but the infection load 
did not (Coefficient: − 0.000003; 95% CI − 0.0000074 to 
0.0000015; p value: 0.21). The sporozoite-infected mos-
quitoes in the test dataset had a range of infection loads 
(Median: 8841 parasite genomes/μL of DNA extract, 
IQR: [2516 to 20,112]). Five sporozoite-infected mos-
quitoes were misclassified as uninfected: two presented 
with the lowest infection loads of the test dataset (33 
and 38 parasite genomes/μL of DNA extract); the other 

Fig. 2  Actual versus predicted plots of oocyst infected mosquitoes investigating NIRS as diagnostic method. Sensitivity, specificity, accuracy and 
respective 95% confidence intervals of self-prediction of P. falciparum-infection in training dataset (a) and prediction of samples of unknown status 
in test dataset (b) (PLS scores: 1 = uninfected, 2 = infected and 1.5 as cut-off value)
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Fig. 3  Actual versus predicted plots of sporozoite infected mosquitoes investigating NIRS as diagnostic method. Sensitivity, specificity, accuracy 
and respective 95% confidence intervals of self-prediction of P. falciparum-infection in training dataset (a) and prediction of samples of unknown 
status in test dataset (b) (PLS scores: 1 = uninfected, 2 = infected and 1.5 as cut-off value)

Table 3  Generalized linear mixed-effects models investigating the  effect of  infection presence (infected or  uninfected) 
and  infection load (number of  parasite genomes/μL of  DNA extract quantified using qPCR) on  the  PLS score 
of the predicted samples including mosquito age as a random effect

Coefficients Robust standard error z 95% Confidence intervals P value

Oocyst infections

 Infection presence 0.67 0.13 5.11 0.41 to 0.93 < 0.001

 Infection load − 0.000003 − 0.000002 − 1.26 − 0.0000074 to 0.0000015 0.21

 Mosquito age
(random effect)

0.018 0.005 – 0.01 to 0.03 –

Sporozoite infections

 Infection presence 0.75 0.12 6.03 0.51 to 1.00 < 0.001

 Infection load 0.0000019 0.0000003 5.82 0.0000013 to 0.0000025 < 0.001

 Mosquito age
(random effect)

0.007 0.008 – 0.0032 to 0.087 –
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three had relatively high infection loads (1156, 6660 and 
12,591 parasite genomes/μL of DNA extract) (Fig.  4b). 
The presence of sporozoite significantly affected the PLS 
scores of the predicted samples (Coefficient: 0.75; 95% 
CI 0.51 to 1.00; p-value: < 0.001) as did the infection load 
(Coefficient: 0.0000019; 95% CI 0.0000013 to 0.0000025; 
p-value < 0.001).

Discussion
This is the first study to show that NIRS can be used to 
accurately detect human malaria in An. gambiae mos-
quitoes. NIRS was able to predict oocyst infection with 
87.7% accuracy (79.9–93.3%) and sporozoite infection 
with 94.5% accuracy (87.6–98.2%). The NIRS predic-
tive accuracy for sporozoite infection of > 90% in this 
study concurs with previous work done using the rodent 

malaria in An. stephensi, which found that NIRS could 
detect the presence of sporozoites in infected mosqui-
toes with 77% accuracy [22]. Unlike the previous study, 
the present calibration model was also capable of identi-
fying oocyst-infected mosquitoes. The PLS calibration of 
the present study was based on a narrower interval of the 
electromagnetic spectrum, 500 to 2400  nm, compared 
to 350 to 2500 nm previously used. This narrower range 
excludes noise present in the extremities of the spectra 
due to light source and sensor limitations and there-
with improved the prediction accuracy of the calibration 
model. Furthermore, the previous study used spectra 
from mosquitoes that had been saturated with chloro-
form which was used to knock them down. This contami-
nation led to clear chloroform peaks in the NIR spectra 
which may have added to the noise and reduced predic-
tion accuracy of the calibration. Differences between the 
vector species and parasite species may also have played 
a role in the small discrepancy of predictive accuracy 
between studies. In addition, the experimental approach 
used in the present study, allowed to account for the 
potentially confounding effects of the infected blood 
meal, given that control group had been fed the same 
blood but with inactivated gametocytes.

Near infrared light is absorbed differently by diverse 
biochemical compounds which, in the mosquito, may 
consistently vary with between species, age and in this 
case infection status. It is hypothesized that biochemical 
changes occurring in the mosquito, as a consequence of 
P. falciparum infection, made it possible to distinguish 
between infected and uninfected mosquitoes using NIRS. 
Consistent differences between the NIR absorbance 
spectra of infected and uninfected mosquitoes may be 
related to the presence of parasite-specific molecules in 
the infected mosquitoes [31–33]. Also, it is possible that 
tissue changes may occur in the mosquitoes due to their 
immune response to the parasite which could have an 
effect on the biochemical composition of the mosquito 
[31]. Additionally, it is known that Plasmodium infec-
tion alters metabolic pathways in mosquitoes and leads 
to higher energy resource storage [34], which may lead 
to differences in NIRS spectra. More research is needed 
to better understand the underlying biochemical features 
that enable NIRS to distinguish between Plasmodium-
infected and uninfected mosquitoes.

The prediction accuracy of the NIRS calibration to 
detect sporozoite infection was influenced not only by 
the presence of P. falciparum sporozoites but also the 
parasite load (number of parasite genomes). This was not 
the case of the calibration to detect oocysts, which was 
only significantly influenced by the presence of infection 
in the midgut. It is possible that slight differences in DNA 
extraction efficiency between samples may have affected 

Fig. 4  Intensity of P. falciparum oocyst (a) and sporozoite (b) 
infection, quantified as the number of parasite genomes per μl of 
DNA extract, in A. gambiae mosquitoes and prediction value score 
based on the predicted probability of infection, with 1 = predicted as 
not infected and 2 = predicted as infected (cut-off value of 1.5)
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the estimate number of parasite genomes in each insect 
sample and, therefore, it is imprudent to make conclu-
sions on how strongly infection load may be influenc-
ing the PLS output scores. The performance accuracy of 
NIRS was similar to qPCR (sporozoite detection: Cohens 
kappa = 0.86; oocyst detection: Cohens’s kappa = 0.75). 
The strong inter-rate agreement between the two meth-
ods, suggests that NIRS may have similar sensitivity and 
specificity to qPCR at detecting malaria sporozoites in 
the mosquito host. ELISA is less specific than PCR [35], 
however due to its low-cost and ease, it is routinely the 
assay chosen by surveillance programs to measure the 
proportion of mosquitoes that carry sporozoites and the 
entomological inoculation rate (EIR). It is possible that 
EIR estimates could be improved by using a more accu-
rate diagnostic test. ELISA commonly uses pooled sam-
ples to reduce costs and time, given that infection rates 
are usually below 2%. In case of an ELISA well positive 
for infection, it is assumed that it arises from one mos-
quito in the respective pool. In contrast, NIRS could be 
used on all samples since sample processing is less-costly 
and faster; it takes approximately 20  s to position and 
collect NIR spectra from one mosquito, allowing around 
100 mosquitoes to be analyzed in 30  min. In addition, 
the method is completely non-destructive which permits 
using the sample for further tests if needed. However, a 
direct comparison of NIRS and ELISA was not the objec-
tive of this study, as the latter method does not allow 
quantification of parasite infection which was needed to 
evaluate if NIRS prediction was affected by P. falciparum 
infection load. Presently NIRS still requires further opti-
mization and validation in the field before being consid-
ered as a possible replacement for ELISA in surveillance 
programmes. Furthermore, the experiment described 
used fresh mosquitoes. Analyzing mosquitoes directly 
after sorting and morphological identification may be 
feasible for research programmes, but less so for control 
or surveillance programmes, which would benefit from 
evaluating different preservation methods.

It is noteworthy that the NIRS instrument is a rug-
ged piece of equipment, which does not require special 
installation or frequent maintenance, and does not nec-
essarily need to be installed in a laboratory. It was origi-
nally designed to be carried to the field to collect plant 
and soil spectra, can be transported in a Pelican case 
(55 × 42 × 32  cm), and requires only a power supply, 
which can be supplied by battery packs that are included 
with the instrument or from a 12  V vehicle power out-
let. It can be assembled or packed in minutes, and if 
used frequently, left on the bench simply protected 
with a vinyl cover as is done with a compound micro-
scope. Generating calibrations requires expert knowl-
edge and technical skills, however, if a calibration file 

is readily available, predicting a sample’s classification 
group is simple, requiring only brief training. The cur-
rent field-deployable NIR spectrometer costs around 
55,000 USD but given that analysis requires no consuma-
bles or reagents and is high-throughput, the investment 
could be quickly paid off, particularly given the poten-
tial of the same technology for age-grading and species 
identification.

While the results presented in this paper are promising, 
NIRS calibrations generated using lab-reared mosquitoes 
do not necessarily represent the diversity of vectors in 
the field, providing no guarantee of the robustness of the 
method when tested on wild-caught mosquitoes. Calibra-
tions must be based on training datasets that capture the 
diversity of field-mosquitoes reducing confounders that 
may affect the classification accuracy, including, different 
mosquito species, age, infection, size, insecticide resist-
ance status, microbiome, and origin. Scale-up will require 
the assembly of training datasets to generate calibrations 
that capture this variability, by including a comprehen-
sive range of mosquitoes characterized by diverse geo-
graphical, ecological, and epidemiological backgrounds. 
This approach is likely to narrow the factors needed for 
prediction by explaining sources of noise and variability 
in the model that are not directly related to infection and 
therewith increase prediction accuracy. Depending on 
how well the signal caused by infection presence is con-
served, this could lead to location-, country- or region-
specific calibrations for infection detection.

Conclusions
NIRS is a promising technology that may provide an accu-
rate and high-throughput solution to monitoring malaria 
transmission in the vector as progression towards elimi-
nation is made. Such a tool may revolutionize how ento-
mological data is used by research programmes given that 
the same test can report various entomological parame-
ters, including age, species and infection status, therewith 
compiling vast amounts of information of epidemiologi-
cal importance to increase understanding of how vec-
tor populations and malaria transmission are changing. 
Future research efforts and resources need to be directed 
at evaluating the best way of generating and optimizing 
calibrations based on wild-caught mosquitoes for each 
entomological parameter, and validating these using spec-
imens from different ecological and geographical regions.
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