424 research outputs found

    Herschel imaging and spectroscopy of the nebula around the luminous blue variable star WRAY 15-751

    Full text link
    We have obtained far-infrared Herschel PACS imaging and spectroscopic observations of the nebular environment of the luminous blue variable WRAY 15-751. These images clearly show that the main, dusty nebula is a shell of radius 0.5 pc and width 0.35 pc extending outside the H-alpha nebula. They also reveal a second, bigger and fainter dust nebula, observed for the first time. Both nebulae lie in an empty cavity, likely the remnant of the O-star wind bubble formed when the star was on the main sequence. The kinematic ages of the nebulae are about 20000 and 80000 years and each nebula contains about 0.05 Msun of dust. Modeling of the inner nebula indicates a Fe-rich dust. The far-infrared spectrum of the main nebula revealed forbidden emission lines coming from ionized and neutral gas. Our study shows that the main nebula consists of a shell of ionized gas surrounded by a thin photodissociation region illuminated by an "average" early-B star. The derived abundance ratios N/O=1.0+/-0.4 and C/O=0.4+/-0.2 indicate a mild N/O enrichment. We estimate that the inner shell contains 1.7+/-0.6 Msun of gas. Assuming a similar dust-to-gas ratio for the outer nebula, the total mass ejected by WRAY 15-751 amounts to 4+/-2 Msun. The measured abundances, masses and kinematic ages of the nebulae were used to constrain the evolution of the star and the epoch at which the nebulae were ejected. Our results point to an ejection of the nebulae during the RSG evolutionary phase of an ~ 40 Msun star. The presence of multiple shells around the star suggests that the mass-loss was not a continuous ejection but rather a series of episodes of extreme mass-loss. Our measurements are compatible with the recent evolutionary tracks computed for an 40 Msun star with little rotation. They support the O-BSG-RSG-YSG-LBV filiation and the idea that high-luminosity and low-luminosity LBVs follow different evolutionary paths.Comment: 19 pages, 13 figures, accepted for publication in A&

    The Herschel view of the nebula around the luminous blue variable star AG Carinae

    Full text link
    Far-infrared Herschel PACS imaging and spectroscopic observations of the nebula around the luminous blue variable (LBV) star AG Car have been obtained along with optical imaging in the Halpha+[NII] filter. In the infrared light, the nebula appears as a clumpy ring shell that extends up to 1.2 pc with an inner radius of 0.4 pc. It coincides with the Halpha nebula, but extends further out. Dust modeling of the nebula was performed and indicates the presence of large grains. The dust mass is estimated to be ~ 0.2 Msun. The infrared spectrum of the nebula consists of forbidden emission lines over a dust continuum. Apart from ionized gas, these lines also indicate the existence of neutral gas in a photodissociation region that surrounds the ionized region. The abundance ratios point towards enrichment by processed material. The total mass of the nebula ejected from the central star amounts to ~ 15 Msun, assuming a dust-to-gas ratio typical of LBVs. The abundances and the mass-loss rate were used to constrain the evolutionary path of the central star and the epoch at which the nebula was ejected, with the help of available evolutionary models. This suggests an ejection during a cool LBV phase for a star of ~ 55 Msun with little rotation.Comment: accepted for publication in A&

    The Binarity of Eta Carinae and its Similarity to Related Astrophysical Objects

    Full text link
    I examine some aspects of the interaction between the massive star Eta Carinae and its companion, in particular during the eclipse-like event, known as the spectroscopic event or the shell event. The spectroscopic event is thought to occur when near periastron passages the stellar companion induces much higher mass loss rate from the primary star, and/or enters into a much denser environment around the primary star. I find that enhanced mass loss rate during periastron passages, if it occurs, might explain the high eccentricity of the system. However, there is not yet a good model to explain the presumed enhanced mass loss rate during periastron passages. In the region where the winds from the two stars collide, a dense slow flow is formed, such that large dust grains may be formed. Unlike the case during the 19th century Great Eruption, the companion does not accrete mass during most of its orbital motion. However, near periastron passages short accretion episodes may occur, which may lead to pulsed ejection of two jets by the companion. The companion may ionize a non-negligible region in its surrounding, resembling the situation in symbiotic systems. I discuss the relation of some of these processes to other astrophysical objects, by that incorporating Eta Car to a large class of astrophysical bipolar nebulae.Comment: Updated version. ApJ, in pres

    Large-scale environments of binary AGB stars probed by Herschel. II: Two companions interacting with the wind of pi1 Gruis

    Full text link
    Context. The Mass loss of Evolved StarS (MESS) sample observed with PACS on board the Herschel Space Observatory revealed that several asymptotic giant branch (AGB) stars are surrounded by an asymmetric circumstellar envelope (CSE) whose morphology is most likely caused by the interaction with a stellar companion. The evolution of AGB stars in binary systems plays a crucial role in understanding the formation of asymmetries in planetary nebul{\ae} (PNe), but at present, only a handful of cases are known where the interaction of a companion with the stellar AGB wind is observed. Aims. We probe the environment of the very evolved AGB star π1\pi^1 Gruis on large and small scales to identify the triggers of the observed asymmetries. Methods. Observations made with Herschel/PACS at 70 μ\mum and 160 μ\mum picture the large-scale environment of π1\pi^1 Gru. The close surroundings of the star are probed by interferometric observations from the VLTI/AMBER archive. An analysis of the proper motion data of Hipparcos and Tycho-2 together with the Hipparcos Intermediate Astrometric Data help identify the possible cause for the observed asymmetry. Results. The Herschel/PACS images of π1\pi^1 Gru show an elliptical CSE whose properties agree with those derived from a CO map published in the literature. In addition, an arc east of the star is visible at a distance of 3838^{\prime\prime} from the primary. This arc is most likely part of an Archimedean spiral caused by an already known G0V companion that is orbiting the primary at a projected distance of 460 au with a period of more than 6200 yr. However, the presence of the elliptical CSE, proper motion variations, and geometric modelling of the VLTI/AMBER observations point towards a third component in the system, with an orbital period shorter than 10 yr, orbiting much closer to the primary than the G0V star.Comment: 13 pages, 11 figures, accepted for publication in Astronomy & Astrophysic

    Herschel/PACS observations of the 69 μm\mu m band of crystalline olivine around evolved stars

    Get PDF
    We present 48 Herschel/PACS spectra of evolved stars in the wavelength range of 67-72 μ\mum. This wavelength range covers the 69 μ\mum band of crystalline olivine (Mg22xFe(2x)SiO4\text{Mg}_{2-2x}\text{Fe}_{(2x)}\text{SiO}_{4}). The width and wavelength position of this band are sensitive to the temperature and composition of the crystalline olivine. Our sample covers a wide range of objects: from high mass-loss rate AGB stars (OH/IR stars, M˙105\dot M \ge 10^{-5} M_\odot/yr), through post-AGB stars with and without circumbinary disks, to planetary nebulae and even a few massive evolved stars. The goal of this study is to exploit the spectral properties of the 69 μ\mum band to determine the composition and temperature of the crystalline olivine. Since the objects cover a range of evolutionary phases, we study the physical and chemical properties in this range of physical environments. We fit the 69 μ\mum band and use its width and position to probe the composition and temperature of the crystalline olivine. For 27 sources in the sample, we detected the 69 μ\mum band of crystalline olivine (Mg(22x)Fe(2x)SiO4\text{Mg}_{(2-2x)}\text{Fe}_{(2x)}\text{SiO}_{4}). The 69 μ\mum band shows that all the sources produce pure forsterite grains containing no iron in their lattice structure. The temperature of the crystalline olivine as indicated by the 69 μ\mum band, shows that on average the temperature of the crystalline olivine is highest in the group of OH/IR stars and the post-AGB stars with confirmed Keplerian disks. The temperature is lower for the other post-AGB stars and lowest for the planetary nebulae. A couple of the detected 69 μ\mum bands are broader than those of pure magnesium-rich crystalline olivine, which we show can be due to a temperature gradient in the circumstellar environment of these stars. continued...Comment: Accepted for publication in A&

    Constraints on the H2O formation mechanism in the wind of carbon-rich AGB stars

    Get PDF
    Context. The recent detection of warm H2_2O vapor emission from the outflows of carbon-rich asymptotic giant branch (AGB) stars challenges the current understanding of circumstellar chemistry. Two mechanisms have been invoked to explain warm H2_2O vapor formation. In the first, periodic shocks passing through the medium immediately above the stellar surface lead to H2_2O formation. In the second, penetration of ultraviolet interstellar radiation through a clumpy circumstellar medium leads to the formation of H2_2O molecules in the intermediate wind. Aims. We aim to determine the properties of H2_2O emission for a sample of 18 carbon-rich AGB stars and subsequently constrain which of the above mechanisms provides the most likely warm H2_2O formation pathway. Methods, Results, and Conclusions. See paper

    Resolving the compact dusty discs around binary post-AGB stars using N-band interferometry

    Get PDF
    We present the first mid-IR long baseline interferometric observations of the circumstellar matter around binary post-AGB stars. Two objects, SX Cen and HD 52961, were observed using the VLTI/MIDI instrument during Science Demonstration Time. Both objects are known binaries for which a stable circumbinary disc is proposed to explain the SED characteristics. This is corroborated by our N-band spectrum showing a crystallinity fraction of more than 50 % for both objects, pointing to a stable environment where dust processing can occur. Surprisingly, the dust surrounding SX Cen is not resolved in the interferometric observations providing an upper limit of 11 mas (or 18 AU at the distance of this object) on the diameter of the dust emission. This confirms the very compact nature of its circumstellar environment. The dust emission around HD 52961 originates from a very small but resolved region, estimated to be ~ 35 mas at 8 micron and ~ 55 mas at 13 micron. These results confirm the disc interpretation of the SED of both stars. In HD 52961, the dust is not homogeneous in its chemical composition: the crystallinity is clearly concentrated in the hotter inner region. Whether this is a result of the formation process of the disc, or due to annealing during the long storage time in the disc is not clear.Comment: 12 pages, 10 figures, accepted for publication in A &

    Catalog of Galactic Beta Cephei Stars

    Full text link
    We present an extensive and up-to-date catalog of Galactic Beta Cephei stars. This catalog is intended to give a comprehensive overview of observational characteristics of all known Beta Cephei stars. 93 stars could be confirmed to be Beta Cephei stars. For some stars we re-analyzed published data or conducted our own analyses. 61 stars were rejected from the final Beta Cephei list, and 77 stars are suspected to be Beta Cephei stars. A list of critically selected pulsation frequencies for confirmed Beta Cephei stars is also presented. We analyze the Beta Cephei stars as a group, such as the distributions of their spectral types, projected rotational velocities, radial velocities, pulsation periods, and Galactic coordinates. We confirm that the majority of these stars are multiperiodic pulsators. We show that, besides two exceptions, the Beta Cephei stars with high pulsation amplitudes are slow rotators. We construct a theoretical HR diagram that suggests that almost all 93 Beta Cephei stars are MS objects. We discuss the observational boundaries of Beta Cephei pulsation and their physical parameters. We corroborate that the excited pulsation modes are near to the radial fundamental mode in frequency and we show that the mass distribution of the stars peaks at 12 solar masses. We point out that the theoretical instability strip of the Beta Cephei stars is filled neither at the cool nor at the hot end and attempt to explain this observation

    The enigmatic nature of the circumstellar envelope and bow shock surrounding Betelgeuse as revealed by Herschel. I. Evidence of clumps, multiple arcs, and a linear bar-like structure

    Get PDF
    Context. The interaction between stellar winds and the interstellar medium (ISM) can create complex bow shocks. The photometers on board the Herschel Space Observatory are ideally suited to studying the morphologies of these bow shocks. Aims. We aim to study the circumstellar environment and wind-ISM interaction of the nearest red supergiant, Betelgeuse. Methods. Herschel PACS images at 70, 100, and 160 micron and SPIRE images at 250, 350, and 500 micron were obtained by scanning the region around Betelgeuse. These data were complemented with ultraviolet GALEX data, near-infrared WISE data, and radio 21 cm GALFA-HI data. The observational properties of the bow shock structure were deduced from the data and compared with hydrodynamical simulations. Results. The infrared Herschel images of the environment around Betelgeuse are spectacular, showing the occurrence of multiple arcs at 6-7 arcmin from the central target and the presence of a linear bar at 9 arcmin. Remarkably, no large-scale instabilities are seen in the outer arcs and linear bar. The dust temperature in the outer arcs varies between 40 and 140 K, with the linear bar having the same colour temperature as the arcs. The inner envelope shows clear evidence of a non-homogeneous clumpy structure (beyond 15 arcsec), probably related to the giant convection cells of the outer atmosphere. The non-homogeneous distribution of the material even persists until the collision with the ISM. A strong variation in brightness of the inner clumps at a radius of 2 arcmin suggests a drastic change in mean gas and dust density some 32 000 yr ago. Using hydrodynamical simulations, we try to explain the observed morphology of the bow shock around Betelgeuse. Conclusions: [abbreviated]Comment: 26 page
    corecore