12 research outputs found

    Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria

    Get PDF
    OBJECTIVES: The purposes of this study were to fabricate biodegradable polydioxanone (PDS IIĀ®) electrospun periodontal drug delivery systems (hereafter referred to as matrices) containing either metronidazole (MET) or ciprofloxacin (CIP) and to investigate the effects of antibiotic incorporation on both periodontopathogens and commensal oral bacteria. MATERIALS AND METHODS: Fibrous matrices were processed from PDS polymer solution by electrospinning. Antibiotic-containing PDS solutions were prepared to obtain four distinct groups: 5 wt.% MET, 25 wt.% MET, 5 wt.% CIP, and 25 wt.% CIP. Pure PDS was used as a control. High-performance liquid chromatography (HPLC) was done to evaluate MET and CIP release. Dual-species biofilms formed by Lactobacillus casei (Lc) and Streptococcus salivarius (Ss) were grown on the surface of all electrospun matrices. After 4 days of biofilm growth, the viability of bacteria on biofilms was assessed. Additionally, antimicrobial properties were evaluated against periodontopathogens Fusobacterium nucleatum (Fn) and Aggregatibacter actinomycetemcomitans (Aa) using agar diffusion assay. RESULTS: A three-dimensional interconnected porous network was observed in the different fabricated matrices. Pure PDS showed the highest fiber diameter mean (1,158ā€‰Ā±ā€‰402 nm) followed in a descending order by groups 5 wt.% MET (1,108ā€‰Ā±ā€‰383 nm), 25 wt.% MET (944ā€‰Ā±ā€‰392 nm), 5 wt.% CIP (871ā€‰Ā±ā€‰309 nm), and 25 wt.% CIP (765ā€‰Ā±ā€‰288 nm). HPLC demonstrated that groups containing higher amounts (25 wt.%) of incorporated drugs released more over time, while those with lower levels (5 wt.%) the least. No inhibitory effect of the tested antibiotics was detected on biofilm formation by the tested commensal oral bacteria. Meanwhile, CIP-containing matrices inhibited growth of Fn and Aa. CONCLUSION: CIP-containing matrices led to a significant inhibition of periodontopathogens without negatively impairing the growth of periodontal beneficial bacteria. CLINICAL RELEVANCE: Based on the proven in vitro inhibition of periodontitis-related bacteria, future in vivo research using relevant animal models is needed to confirm the effectiveness of these drug delivery systems

    Co-administration of ethanol and nicotine: the enduring alterations in the rewarding properties of nicotine and glutamate activity within the mesocorticolimbic system of female alcohol-preferring (P) rats

    Get PDF
    RATIONALE: The co-abuse of ethanol (EtOH) and nicotine (NIC) increases the likelihood that an individual will relapse to drug use while attempting to maintain abstinence. There is limited research examining the consequences of long-term EtOH and NIC co-abuse. OBJECTIVES: The current experiments determined the enduring effects of chronic EtOH, NIC, or EtOH + NIC intake on the reinforcing properties of NIC and glutamate (GLU) activity within the mesocorticolimbic (MCL) system. METHODS: Alcohol-preferring (P) rats self-administered EtOH, Sacc + NIC, or EtOH + NIC combined for 10 weeks. The reinforcing properties of 0.1-3.0 Ī¼M NIC within the nucleus accumbens shell (AcbSh) were assessed following a 2-3-week drug-free period using intracranial self-administration (ICSA) procedures. The effects of EtOH, Sacc, Sacc + NIC, or EtOH + NIC intake on extracellular levels and clearance of glutamate (GLU) in the medial prefrontal cortex (mPFC) were also determined. RESULTS: Binge intake of EtOH (96-100 mg%) and NIC (21-27 mg/mL) were attained. All groups of P rats self-infused 3.0 Ī¼M NIC directly into the AcbSh, whereas only animals in the EtOH + NIC co-abuse group self-infused the 0.3 and 1.0 Ī¼M NIC concentrations. Additionally, self-administration of EtOH + NIC, but not EtOH, Sacc or Sacc + NIC, resulted in enduring increases in basal extracellular GLU levels in the mPFC. CONCLUSIONS: Overall, the co-abuse of EtOH + NIC produced enduring neuronal alterations within the MCL which enhanced the rewarding properties of NIC in the AcbSh and elevated extracellular GLU levels within the mPFC

    Regulation of the Deleterious Effects of Binge-Like Exposure to Alcohol during Adolescence by Ī±7 Nicotinic Acetylcholine Receptor Agents: Prevention by Pretreatment with a Ī±7 Negative Allosteric Modulator and Emulation by a Ī±7 Agonist in Alcohol-Preferring (P) Male and Female Rats

    Get PDF
    Rationale and objectives: Binge-like alcohol consumption during adolescence associates with several deleterious consequences during adulthood including an increased risk for developing alcohol use disorder (AUD) and other addictions. Replicated preclinical data has indicated that adolescent exposure to binge-like levels of alcohol results in a reduction of choline acetyltransferase (ChAT) and an upregulation in the Ī±7 nicotinic receptor (Ī±7). From this information, we hypothesized that the Ī±7 plays a critical role in mediating the effects of adolescent alcohol exposure. Methods: Male and female P rats were injected with the Ī±7 agonist AR-R17779 (AR) once during 6 time points between post-natal days (PND) 29-37. Separate groups were injected with the Ī±7 negative allosteric modulator (NAM) dehydronorketamine (DHNK) 2 h before administration of 4 g/kg EtOH (14 total exposures) during PND 28-48. On PND 75, all rats were given access to water and ethanol (15 and 30%) for 6 consecutive weeks (acquisition). All rats were then deprived of EtOH for 2 weeks and then, alcohol was returned (relapse). Results: Administration of AR during adolescence significantly increased acquisition of alcohol consumption during adulthood and prolonged relapse drinking in P rats. In contrast, administration of DHNK prior to binge-like EtOH exposure during adolescence prevented the increase in alcohol consumption observed during acquisition of alcohol consumption and the enhancement of relapse drinking observed during adulthood. Discussion: The data indicate that Ī±7 mediates the effects of alcohol during adolescence. The data also indicate that Ī±7 NAMs are potential prophylactic agents to reduce the deleterious effects of adolescent alcohol abuse

    Selective breeding for high alcohol consumption and response to nicotine: locomotor activity, dopaminergic in the mesolimbic system, and innate genetic differences in male and female alcohol-preferring, non-preferring, and replicate lines of high-alcohol drinking and low-alcohol drinking rats

    Get PDF
    Rationale There is evidence for a common genetic link between alcohol and nicotine dependence. Rodents selectively bred for high alcohol consumption/responsivity are also more likely to self-administer nicotine than controls. Objectives The experiments examined the response to systemic nicotine, the effects of nicotine within the drug reward pathway, and innate expression of nicotine-related genes in a brain region regulating drug reward/self-administration in multiple lines of rats selectively bred for high and low alcohol consumption. Methods The experiments examined the effects of systemic administration of nicotine on locomotor activity, the effects of nicotine administered directly into the (posterior ventral tegmental area; pVTA) on dopamine (DA) release in the nucleus accumbens shell (AcbSh), and innate mRNA levels of acetylcholine receptor genes in the pVTA were determined in 6 selectively bred high/low alcohol consuming and Wistar rat lines. Results The high alcohol-consuming rat lines had greater nicotine-induced locomotor activity compared to low alcohol-consuming rat lines. Microinjections of nicotine into the pVTA resulted in DA release in the AcbSh with the dose response curves for high alcohol-consuming rats shifted leftward and upward. Genetic analysis of the pVTA indicated P rats expressed higher levels of Ī±2 and Ī²4. Conclusion Selective breeding for high alcohol preference resulted in a genetically divergent behavioral and neurobiological sensitivity to nicotine. The observed behavioral and neurochemical differences between the rat lines would predict an increased likelihood of nicotine reinforcement. The data support the hypothesis of a common genetic basis for drug addiction and identifies potential receptor targets

    Adolescent Intermittent Ethanol Increases the Sensitivity to the Reinforcing Properties of Ethanol and the Expression of Select Cholinergic and Dopaminergic Genes within the Posterior Ventral Tegmental Area

    Get PDF
    Background Although not legally allowed to consume alcohol, adolescents account for 11% of all alcohol use in the United States and approximately 90% of adolescent intake is in the form of an alcohol binge. The adolescent intermittent ethanol (AIE) model developed by the NADIA consortium produces bingeā€like EtOH exposure episodes. The current experiment examined the effects of AIE on the reinforcing properties of EtOH and genetic expression of cholinergic and dopaminergic factors within the posterior ventral tegmental area (pVTA) in Wistar male and female rats and in male alcoholā€preferring (P) rats. Methods Rats were exposed to the AIE or water during adolescence, and all testing occurred during adulthood. Wistar control and AIE rats were randomly assigned to groups that selfā€administered 0 to 200 mg% EtOH. Male P rats selfā€administered 0 to 100 mg%. Results The data indicated that exposure to AIE in both Wistar male and female rats (and male P rats) resulted in a significant leftward shift in doseā€“response curve for EtOH selfā€administration into the pVTA. TaqMan array indicated that AIE exposure had divergent effects on the expression of nicotinic receptors (increased a7, reduction in a4 and a5). There were also sexā€specific effects of AIE on gene expression; male only reduction in D3 receptors. Conclusion Bingeā€like EtOH exposure during adolescence enhances the sensitivity to the reinforcing properties of EtOH during adulthood which could be part of biological sequelae that are the basis for the deleterious effects of adolescent alcohol consumption on the rate of alcoholism during adulthood

    Negative and positive allosteric modulators of the Ī±7 nicotinic acetylcholine receptor regulates the ability of adolescent binge alcohol exposure to enhance adult alcohol consumption

    Get PDF
    Rationale and Objectives: Ethanol acts directly on the Ī±7 Nicotinic acetylcholine receptor (Ī±7). Adolescent-binge alcohol exposure (ABAE) produces deleterious consequences during adulthood, and data indicate that the Ī±7 receptor regulates these damaging events. Administration of an Ī±7 Negative Allosteric Modulator (NAM) or the cholinesterase inhibitor galantamine can prophylactically prevent adult consequences of ABAE. The goals of the experiments were to determine the effects of co-administration of ethanol and a Ī±7 agonist in the mesolimbic dopamine system and to determine if administration of an Ī±7 NAM or positive allosteric modulator (PAM) modulates the enhancement of adult alcohol drinking produced by ABAE.Methods: In adult rats, ethanol and the Ī±7 agonist AR-R17779 (AR) were microinjected into the posterior ventral tegmental area (VTA), and dopamine levels were measured in the nucleus accumbens shell (AcbSh). In adolescence, rats were treated with the Ī±7 NAM SB-277011-A (SB) or PNU-120596 (PAM) 2 h before administration of EtOH (ABAE). Ethanol consumption (acquisition, maintenance, and relapse) during adulthood was characterized.Results: Ethanol and AR co-administered into the posterior VTA stimulated dopamine release in the AcbSh in a synergistic manner. The increase in alcohol consumption during the acquisition and relapse drinking during adulthood following ABAE was prevented by administration of SB, or enhanced by administration of PNU, prior to EtOH exposure during adolescence.Discussion: Ethanol acts on the Ī±7 receptor, and the Ī±7 receptor regulates the critical effects of ethanol in the brain. The data replicate the findings that cholinergic agents (Ī±7 NAMs) can act prophylactically to reduce the alterations in adult alcohol consumption following ABAE

    Adolescent Intermittent Ethanol (AIE) Enhances the Dopaminergic Response to Ethanol within the Mesolimbic Pathway during Adulthood: Alterations in Cholinergic/Dopaminergic Genes Expression in the Nucleus Accumbens Shell

    Get PDF
    A consistent preclinical finding is that exposure to alcohol during adolescence produces a persistent hyperdopaminergic state during adulthood. The current experiments determine that effects of Adolescent Intermittent Ethanol (AIE) on the adult neurochemical response to EtOH administered directly into the mesolimbic dopamine system, alterations in dendritic spine and gene expression within the nucleus accumbens shell (AcbSh), and if treatment with the HDACII inhibitor TSA could normalize the consequences of AIE. Rats were exposed to the AIE (4 g/kg ig; 3 days a week) or water (CON) during adolescence, and all testing occurred during adulthood. CON and AIE rats were microinjected with EtOH directly into the posterior VTA and dopamine and glutamate levels were recorded in the AcbSh. Separate groups of AIE and CON rats were sacrificed during adulthood and Taqman arrays and dendritic spine morphology assessments were performed. The data indicated that exposure to AIE resulted in a significant leftward and upward shift in the dose-response curve for an increase in dopamine in the AcbSh following EtOH microinjection into the posterior VTA. Taqman array indicated that AIE exposure affected the expression of target genes (Chrna7, Impact, Chrna5). The data indicated no alterations in dendritic spine morphology in the AcbSh or any alteration in AIE effects by TSA administration. Binge-like EtOH exposure during adolescence enhances the response to acute ethanol challenge in adulthood, demonstrating that AIE produces a hyperdopaminergic mesolimbic system in both male and female Wistar rats. The neuroadaptations induced by AIE in the AcbSh could be part of the biological basis of the observed negative consequences of adolescent binge-like alcohol exposure on adult drug self-administration behaviors

    Peripheral Administration of Ethanol Results in a Correlated Increase in Dopamine and Serotonin Within the Posterior Ventral Tegmental Area

    No full text
    Aims Two critical neurotransmitter systems regulating ethanol (EtOH) reward are serotonin (5-HT) and dopamine (DA). Within the posterior ventral tegmental area (pVTA), 5-HT receptors have been shown to regulate DA neuronal activity. Increased pVTA neuronal activity has been linked to drug reinforcement. The current experiment sought to determine the effect of EtOH on 5-HT and DA levels within the pVTA. Methods Wistar rats were implanted with cannula aimed at the pVTA. Neurochemical levels were determined using standard microdialysis procedures with concentric probes. Rats were randomly assigned to one of the five groups (n = 41; 7ā€“9 per group) that were treated with 0ā€“3.0ā€‰g/kg EtOH (intraperitoneally). Results Ethanol produced increased extracellular DA levels in the pVTA that resembled an inverted U-shape doseā€“response curve with peak levels (~200% of baseline) at the 2.25ā€‰g/kg dose. The increase in DA levels was observed for an extended period of time (~100 minutes). The effects of EtOH on extracellular 5-HT levels in the pVTA also resembled an inverted U-shape doseā€“response curve. However, increased 5-HT levels were only observed during the initial post-injection sample. The increases in extracellular DA and 5-HT levels were significantly correlated. Conclusion The data indicate intraperitoneal EtOH administration stimulated the release of both 5-HT and DA within the pVTA, the levels of which were significantly correlated. Overall, the current findings suggest that the ability of EtOH to stimulate DA activity within the mesolimbic system may be modulated by increases in 5-HT release within the pVTA. Short summary Two critical neurotransmitter systems regulating ethanol reward are serotonin and dopamine. The current experiment determined that intraperitoneal ethanol administration increased serotonin and dopamine levels within the pVTA (levels were significantly correlated). The current findings suggest the ability of EtOH to stimulate serotonin and dopamine activity within the mesolimbic system

    The Rewarding and Anxiolytic Properties of Ethanol within the Central Nucleus of the Amygdala: Mediated by Genetic Background and Nociceptin

    No full text
    In humans, alcohol is consumed for its rewarding and anxiolytic effects. The central nucleus of the amygdala (CeA) is considered a neuronal nexus that regulates fear, anxiety, and drug self-administration. Manipulations of the CeA alter ethanol (EtOH) consumption under numerous EtOH self-administration models. The experiments determined whether EtOH is reinforcing/anxiolytic within the CeA, whether selective breeding for high alcohol consumption alters the rewarding properties of EtOH in the CeA, and whether the reinforcing/anxiolytic effects of EtOH in the CeA are mediated by the neuropeptides corticotropin-releasing factor (CRF) and nociceptin. The reinforcing properties of EtOH were determined by having male Wistar and Taconic alcohol-preferring (tP) rats self-administer EtOH directly into the CeA. The expression of anxiety-like behaviors was assessed through multiple behavioral models (social interaction, acoustic startle, and open field). Coadministration of EtOH and a CRF1 antagonist (NBI35965) or nociceptin on self-administration into the CeA and anxiety-like behaviors was determined. EtOH was self-administered directly into the lateral CeA, and tP rats self-administered a lower concentration of EtOH than Wistar rats. EtOH microinjected into the lateral CeA reduced the expression of anxiety-like behaviors, indicating an anxiolytic effect. Coadministration of NBI35965 failed to alter the rewarding/anxiolytic properties of EtOH in the CeA. In contrast, coadministration of the nociceptin enhanced both EtOH reward and anxiolysis in the CeA. Overall, the data indicate that the lateral CeA is a key anatomic location that mediates the rewarding and anxiolytic effects of EtOH, and local nociceptin receptors, but not local CRF1 receptors, are involved in these behaviors. SIGNIFICANCE STATEMENT: Alcohol is consumed for the stimulatory, rewarding, and anxiolytic properties of the drug of abuse. The current data are the first to establish that alcohol is reinforcing and anxiolytic within the lateral central nucleus of the amygdala (CeA) and that the nociceptin system regulates these effects of alcohol within the CeA
    corecore