2,677 research outputs found

    Virtual Rephotography: Novel View Prediction Error for 3D Reconstruction

    Full text link
    The ultimate goal of many image-based modeling systems is to render photo-realistic novel views of a scene without visible artifacts. Existing evaluation metrics and benchmarks focus mainly on the geometric accuracy of the reconstructed model, which is, however, a poor predictor of visual accuracy. Furthermore, using only geometric accuracy by itself does not allow evaluating systems that either lack a geometric scene representation or utilize coarse proxy geometry. Examples include light field or image-based rendering systems. We propose a unified evaluation approach based on novel view prediction error that is able to analyze the visual quality of any method that can render novel views from input images. One of the key advantages of this approach is that it does not require ground truth geometry. This dramatically simplifies the creation of test datasets and benchmarks. It also allows us to evaluate the quality of an unknown scene during the acquisition and reconstruction process, which is useful for acquisition planning. We evaluate our approach on a range of methods including standard geometry-plus-texture pipelines as well as image-based rendering techniques, compare it to existing geometry-based benchmarks, and demonstrate its utility for a range of use cases.Comment: 10 pages, 12 figures, paper was submitted to ACM Transactions on Graphics for revie

    Stochastic analysis of different rough surfaces

    Full text link
    This paper shows in detail the application of a new stochastic approach for the characterization of surface height profiles, which is based on the theory of Markov processes. With this analysis we achieve a characterization of the scale dependent complexity of surface roughness by means of a Fokker-Planck or Langevin equation, providing the complete stochastic information of multiscale joint probabilities. The method is applied to several surfaces with different properties, for the purpose of showing the utility of this method in more details. In particular we show the evidence of Markov properties, and we estimate the parameters of the Fokker-Planck equation by pure, parameter-free data analysis. The resulting Fokker-Planck equations are verified by numerical reconstruction of conditional probability density functions. The results are compared with those from the analysis of multi-affine and extended multi-affine scaling properties which is often used for surface topographies. The different surface structures analysed here show in details advantages and disadvantages of these methods.Comment: Minor text changes to be identical with the published versio

    Multiscale reconstruction of time series

    Get PDF
    A new method is proposed which allows a reconstruction of time series based on higher order multiscale statistics given by a hierarchical process. This method is able to model the time series not only on a specific scale but for a range of scales. It is possible to generate complete new time series, or to model the next steps for a given sequence of data. The method itself is based on the joint probability density which can be extracted directly from given data, thus no estimation of parameters is necessary. The results of this approach are shown for a real world dataset, namely for turbulence. The unconditional and conditional probability densities of the original and reconstructed time series are compared and the ability to reproduce both is demonstrated. Therefore in the case of Markov properties the method proposed here is able to generate artificial time series with correct n-point statistics.Comment: 4 pages, 3 figure
    corecore