2,383 research outputs found

    The Role of Worker Flows in the Dynamics and Distribution of UK Unemployment

    Get PDF
    Unemployment varies substantially over time and across subgroups of the labour market. Worker flows among labour market states act as key determinants of this variation. We examine how the structure of unemployment across groups and its cyclical movements across time are shaped by changes in labour market flows. Using novel estimates of flow transition rates for the UK over the last 35 years, we decompose unemployment variation into parts accounted for by changes in rates of job loss, job finding and flows via non-participation. Close to two-thirds of the volatility of unemployment in the UK over this period can be traced to rises in rates of job loss that accompany recessions. The share of this inflow contribution has been broadly the same in each of the past three recessions. Decreased jobfinding rates account for around one-quarter of unemployment cyclicality and the remaining variation can be attributed to flows via non-participation. Digging deeper into the structure of unemployment by gender, age and education, the flow-approach is shown to provide a richer understanding of the unemployment experiences across population subgroups.labour market, unemployment, worker flows

    Experimental Realization of a One-way Quantum Computer Algorithm Solving Simon's Problem

    Get PDF
    We report an experimental demonstration of a one-way implementation of a quantum algorithm solving Simon's Problem - a black box period-finding problem which has an exponential gap between the classical and quantum runtime. Using an all-optical setup and modifying the bases of single-qubit measurements on a five-qubit cluster state, key representative functions of the logical two-qubit version's black box can be queried and solved. To the best of our knowledge, this work represents the first experimental realization of the quantum algorithm solving Simon's Problem. The experimental results are in excellent agreement with the theoretical model, demonstrating the successful performance of the algorithm. With a view to scaling up to larger numbers of qubits, we analyze the resource requirements for an n-qubit version. This work helps highlight how one-way quantum computing provides a practical route to experimentally investigating the quantum-classical gap in the query complexity model.Comment: 9 pages, 5 figure

    Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment

    Full text link
    We develop a theoretical analysis of four-wave mixing used to generate photon pairs useful for quantum information processing. The analysis applies to a single mode microstructured fibre pumped by an ultra-short coherent pulse in the normal dispersion region. Given the values of the optical propagation constant inside the fibre, we can estimate the created number of photon pairs per pulse, their central wavelength and their respective bandwidth. We use the experimental results from a picosecond source of correlated photon pairs using a micro-structured fibre to validate the model. The fibre is pumped in the normal dispersion regime at 708nm and phase matching is satisfied for widely spaced parametric wavelengths of 586nm and 894nm. We measure the number of photons per pulse using a loss-independent coincidence scheme and compare the results with the theoretical expectation. We show a good agreement between the theoretical expectations and the experimental results for various fibre lengths and pump powers.Comment: 23 pages, 9 figure

    Experimental demonstration of a graph state quantum error-correction code

    Full text link
    Scalable quantum computing and communication requires the protection of quantum information from the detrimental effects of decoherence and noise. Previous work tackling this problem has relied on the original circuit model for quantum computing. However, recently a family of entangled resources known as graph states has emerged as a versatile alternative for protecting quantum information. Depending on the graph's structure, errors can be detected and corrected in an efficient way using measurement-based techniques. In this article we report an experimental demonstration of error correction using a graph state code. We have used an all-optical setup to encode quantum information into photons representing a four-qubit graph state. We are able to reliably detect errors and correct against qubit loss. The graph we have realized is setup independent, thus it could be employed in other physical settings. Our results show that graph state codes are a promising approach for achieving scalable quantum information processing

    The Day is Done

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-me/1850/thumbnail.jp

    The Arrow and the Song

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-me/1849/thumbnail.jp

    Population growth, immigration and labour market dynamics

    Get PDF
    This paper examines the role of population flows on labour market dynamics across immigrant and native-born populations in the United Kingdom. Population flows are large, and cyclical, driven first by the maturation of baby boom cohorts in the 1980s, and latterly by immigration in the 2000s. New measures of labour market flows by migrant status uncover both the flow origins of disparities in the levels and cyclicalities of immigrant and native labour market outcomes, as well as their more recent convergence. A novel dynamic accounting framework reveals that population flows have played a nontrivial role in the volatility of labour markets among both the UK-born and, especially, immigrants

    Continuous or intermittent walking, the effect on glycated hemoglobin in sedentary employees during 10-week intervention

    Get PDF
    To examine long term changes on glycated hemoglobin in sedentary employees exposed to two different walking programs during a 10-week intervention. A total of 68 sedentary employees participated in a 10-week walking intervention and were randomly assigned to one of three groups: intermittent walking, continuous walking or control group. Hemoglobin A1cNOW+ device tested glycated hemoglobin and accelerometry assessed physical activity. Results showed glycated hemoglobin significantly decreased over the ten weeks (5.82±0.49, 5.66±0.44) F(1,64) =4.229, p=.044) in the continuous walking group. Post-Hoc test showed the continuous walking group was significantly affected, F=8.463, p=.009, with a large size effect n2=.297. There were no changes within the intermittent group (5.69±0.63, 5.63±0.6) or control group (5.59±0.6, 5.6±0.54) (p>0.05). Accelerometry showed a main effect of time by group interaction F(4,124) =4.688, p=0.001). Post-Hoc indicated that the continuous walking group took significantly longer bouts of moderate to vigorous intensity walking at week-6 compared to pre-test (p=0.006) at this could have influenced the results, there were no changes in the length of bouts in the intermittent or control groups (p>0.05). Sedentary employees who perform a moderate intensity continuous walking program show benefits in controlling blood glucose, thereby, reducing the risk of developing type 2 diabetes
    • …
    corecore