10,003 research outputs found

    Post heat treatment effects on double layer metal structures for VLSI applications

    Get PDF
    The realization of high yield double layer metal systems using wet chemistry processes and the ability to extend yields beyond that attainable with wet chemistry by means of post sintering processes at temperatures below 500 C for potential applications in very large scale integration structures were studied. Yields in excess of 98% and average total contact resistance of less than 150 ohms and 200 ohms were realized for a series of 560 vias of 0.5 X 0.5 mils and 0.2 X 0.2 mils in size, respectively

    A study of trends and techniques for space base electronics

    Get PDF
    The use of dry processing and alternate dielectrics for processing wafers is reported. A two dimensional modeling program was written for the simulation of short channel MOSFETs with nonuniform substrate doping. A key simplifying assumption used is that the majority carriers can be represented by a sheet charge at the silicon dioxide-silicon interface. In solving current continuity equation, the program does not converge. However, solving the two dimensional Poisson equation for the potential distribution was achieved. The status of other 2D MOSFET simulation programs are summarized

    Trends and Techniques for Space Base Electronics

    Get PDF
    Simulations of various phosphorus and boron diffusions in SOS were completed and a sputtering system, furnaces, and photolithography related equipment were set up. Double layer metal experiments initially utilized wet chemistry techniques. By incorporating ultrasonic etching of the vias, premetal cleaning a modified buffered HF, phosphorus doped vapox, and extended sintering, yields of 98% were obtained using the standard test pattern. A two dimensional modeling program was written for simulating short channel MOSFETs with nonuniform substrate doping. A key simplifying assumption used is that the majority carriers can be represented by a sheet charge at the silicon dioxide silicon interface. Although the program is incomplete, the two dimensional Poisson equation for the potential distribution was achieved. The status of other Z-D MOSFET simulation programs is summarized

    A study of trends and techniques for space base electronics

    Get PDF
    A sputtering system was developed to deposit aluminum and aluminum alloys by the dc sputtering technique. This system is designed for a high level of cleanliness and for monitoring the deposition parameters during film preparation. This system is now ready for studying the deposition and annealing parameters upon double-level metal preparation. A technique recently applied for semiconductor analysis, the finite element method, was studied for use in the computer modeling of two dimensional MOS transistor structures. It was concluded that the method has not been sufficiently well developed for confident use at this time. An algorithm was developed for confident use at this time. An algorithm was developed for implementing a computer study which is based upon the finite difference method. The program which was developed was modified and used to calculate redistribution data for boron and phosphorous which had been predeposited by ion implantation with range and straggle conditions. Data were generated for 111 oriented SOS films with redistribution in N2, dry O2 and steam ambients

    Constructing deal networks : brokers as network 'architects' in the U.S. IPO market and other examples.

    Get PDF
    We introduce the concept of the network architect to extend theory explaining how brokers create and manage structural holes in mediated markets. We argue that a broker's social resources and dependence on the market, along with exogenous deal conditions, influence the broker's motivations and willingness to make tradeoffs between long-term and short-term considerations when constructing deal networks. We develop our model and propositions in the context of the U.S. initial public offerings market and then generalize these arguments to other market contexts

    Anisotropic Magneto-Thermopower: the Contribution of Interband Relaxation

    Full text link
    Spin injection in metallic normal/ferromagnetic junctions is investigated taking into account the anisotropic magnetoresistance (AMR) occurring in the ferromagnetic layer. It is shown, on the basis of a generalized two channel model, that there is an interface resistance contribution due to anisotropic scattering, beyond spin accumulation and giant magnetoresistance (GMR). The corresponding expression of the thermopower is derived and compared with the expression for the thermopower produced by the GMR. First measurements of anisotropic magnetothermopower are presented in electrodeposited Ni nanowires contacted with Ni, Au and Cu. The results of this study show that while the giant magnetoresistance and corresponding thermopower demonstrates the role of spin-flip scattering, the observed anisotropic magnetothermopower indicates interband s-d relaxation mechanisms.Comment: 20 pages, 4 figure

    Quasi-normal modes for doubly rotating black holes

    Get PDF
    Based on the work of Chen, L\"u and Pope, we derive expressions for the D≥6D\geq 6 dimensional metric for Kerr-(A)dS black holes with two independent rotation parameters and all others set equal to zero: a1≠0,a2≠0,a3=a4=...=0a_1\neq 0, a_2\neq0, a_3=a_4=...=0. The Klein-Gordon equation is then explicitly separated on this background. For D≥6D\geq 6 this separation results in a radial equation coupled to two generalized spheroidal angular equations. We then develop a full numerical approach that utilizes the Asymptotic Iteration Method (AIM) to find radial Quasi-Normal Modes (QNMs) of doubly rotating flat Myers-Perry black holes for slow rotations. We also develop perturbative expansions for the angular quantum numbers in powers of the rotation parameters up to second order.Comment: RevTeX 4-1, various figure
    • …
    corecore