11,198 research outputs found

    Long-term magnetic field stability of Vega

    Full text link
    We present new spectropolarimetric observations of the normal A-type star Vega, obtained during the summer of 2010 with NARVAL at T\'elescope Bernard Lyot (Pic du Midi Observatory). This new time-series is constituted of 615 spectra collected over 6 different nights. We use the Least-Square-Deconvolution technique to compute, from each spectrum, a mean line profile with a signal-to-noise ratio close to 20,000. After averaging all 615 polarized observations, we detect a circularly polarized Zeeman signature consistent in shape and amplitude with the signatures previously reported from our observations of 2008 and 2009. The surface magnetic geometry of the star, reconstructed using the technique of Zeeman-Doppler Imaging, agrees with the maps obtained in 2008 and 2009, showing that most recognizable features of the photospheric field of Vega are only weakly distorted by large-scale surface flows (differential rotation or meridional circulation).Comment: Proceedings of the conference "Stellar polarimetry: from birth to death", 2011 Jun 27-30, Madiso

    A dynamical magnetosphere model for periodic Halpha emission from the slowly rotating magnetic O star HD191612

    Full text link
    The magnetic O-star HD191612 exhibits strongly variable, cyclic Balmer line emission on a 538-day period. We show here that its variable Halpha emission can be well reproduced by the rotational phase variation of synthetic spectra computed directly from full radiation magneto-hydrodynamical simulations of a magnetically confined wind. In slow rotators such as HD191612, wind material on closed magnetic field loops falls back to the star, but the transient suspension of material within the loops leads to a statistically overdense, low velocity region around the magnetic equator, causing the spectral variations. We contrast such "dynamical magnetospheres" (DMs) with the more steady-state "centrifugal magnetospheres" of stars with rapid rotation, and discuss the prospects of using this DM paradigm to explain periodic line emission from also other non-rapidly rotating magnetic massive stars.Comment: 5 pages, 5 figures, accepted for publication in MNRAS letter

    Investigating the origin of cyclical wind variability in hot, massive stars - II. Hydrodynamical simulations of co-rotating interaction regions using realistic spot parameters for the O giant ξ\xi Persei

    Full text link
    OB stars exhibit various types of spectral variability historically associated with wind structures, including the apparently ubiquitous discrete absorption components (DACs). These features have been proposed to be caused either by magnetic fields or non-radial pulsations. In this second paper of this series, we revisit the canonical phenomenological hydrodynamical modelling used to explain the formation of DACs by taking into account modern observations and more realistic theoretical predictions. Using constraints on putative bright spots located on the surface of the O giant ξ\xi Persei derived from high precision space-based broadband optical photometry obtained with the Microvariability and Oscillations of STars (MOST) space telescope, we generate two-dimensional hydrodynamical simulations of co-rotating interaction regions in its wind. We then compute synthetic ultraviolet (UV) resonance line profiles using Sobolev Exact Integration and compare them with historical timeseries obtained by the International Ultraviolet Explorer (IUE) to evaluate if the observed behaviour of ξ\xi Persei's DACs is reproduced. Testing three different models of spot size and strength, we find that the classical pattern of variability can be successfully reproduced for two of them: the model with the smallest spots yields absorption features that are incompatible with observations. Furthermore, we test the effect of the radial dependence of ionization levels on line driving, but cannot conclusively assess the importance of this factor. In conclusion, this study self-consistently links optical photometry and UV spectroscopy, paving the way to a better understanding of cyclical wind variability in massive stars in the context of the bright spot paradigm.Comment: 16 pages, 10 figures, accepted for publication by MNRA

    Discovery of magnetic fields in the very young, massive stars W601 (NGC 6611) and OI 201 (NGC 2244)

    Full text link
    Context: Recent spectropolarimetric observations of Herbig Ae/Be stars have yielded new arguments in favour of a fossil origin for the magnetic fields of intermediate mass stars. Aims: To study the evolution of these magnetic fields, and their impact on the evolution of the angular momentum of these stars during the pre-main sequence phase, we observed Herbig Ae/Be members of young open clusters of various ages. Methods: We obtained high-resolution spectropolarimetric observations of Herbig Ae/Be stars belonging to the young open clusters NGC 6611 (< 6 Myr), NGC 2244 (~1.9 Myr), and NGC 2264 (~8 Myr), using ESPaDOnS at theCanada-France-Hawaii Telescope. Results: Here we report the discovery of strong magnetic fields in two massive pre-main sequence cluster stars. We detected, for the first time, a magnetic field in a pre-main sequence rapid rotator: the 10.2 Msun Herbig B1.5e star W601 (NGC 6611; v sin i ~ 190 km/s). Our spectropolarimetric observations yield a longitudinal magnetic field larger than 1 kG, and imply a rotational period shorter than 1.7 days. The spectrum of this very young object (age ~ 0.017 Myr) shows strong and variable lines of He and Si. We also detected a magnetic field in the 12.1 Msun B1 star OI 201 (NGC 2244; v sin i = 23.5 km/s). The Stokes V profile of this star does not vary over 5 days, suggesting a long rotational period, a pole-on orientation, or aligned magnetic and rotation axes. OI 201 is situtated near the Zero-Age Main Sequence on the HR diagram, and exhibits normal chemical abundances and no spectrum variability.Comment: Accepted for publication as a letter in A&
    corecore