122 research outputs found
Sea breeze forcing of estuary turbulence and air-water CO2 exchange
The sea breeze is often a dominant meteorological feature at the coastline, but little is known about its estuarine impacts. Measurements at an anchored catamaran and meteorological stations along the Hudson River and New York Bay estuarine system are used to illustrate some basic characteristics and impacts of the feature. The sea breeze propagates inland, arriving in phase with peak solar forcing at seaward stations, but several hours later at up-estuary stations. Passage of the sea breeze front raises the water-to-air CO2 flux by 1–2 orders of magnitude, and drives turbulence comparable to spring tide levels in the upper meter of the water column, where most primary productivity occurs in this highly turbid system. Modeling and observational studies often use remotely-measured winds to compute air-water fluxes (e.g., momentum, CO2), and this leads to a factor of two flux error on sea breeze days during the study
Investigations of air-sea gas exchange in the CoOP Coastal Air-Sea Chemical Exchange project
Author Posting. © Oceanography Society, 2008. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 21, 4 (2008): 34-45.The exchange of CO2 and other gases across the ocean-air interface is an extremely
important component in global climate dynamics, photosynthesis and respiration, and the absorption of
anthropogenically produced CO2. The many different mechanisms and properties that control the air-sea
flux of CO2 can have large spatial and temporal variability, particularly in the coastal environment. The need
for making short-time-scale and small-spatial-scale estimates of gas transfer velocity, along with the physical
and chemical parameters that affect it, provided a framework for the field experiments of the Coastal Ocean
Processes Program (CoOP) Coastal Air-Sea Chemical Exchange (CASCEX) program. As such, the CASCEX
project provided an opportunity to develop some of the first in situ techniques to estimate gas fluxes using
micrometeorological and thermal imagery techniques. The results reported from the CASCEX experiments
represent the first step toward reconciling the indirect but widely accepted estimates of gas exchange with
these more direct, higher-resolution estimates over the coastal ocean. These results and the advances in
sensor technology initiated during the CASCEX project have opened up even larger regions of the global
ocean to investigation of gas exchange and its role in climate change.Funding for this work was provided
by the National Science Foundation
(NSF) CoOP program under grants
OCE-9410534 and OCE-9711285
Green roof seasonal variation: comparison of the hydrologic behavior of a thick and a thin extensive system in New York City
Green roofs have been utilized for urban stormwater management due to their ability to capture rainwater locally. Studies of the most common type, extensive green roofs, have demonstrated that green roofs can retain significant amounts of stormwater, but have also shown variation in seasonal performance. The purpose of this study is to determine how time of year impacts the hydrologic performance of extensive green roofs considering the covariates of antecedent dry weather period (ADWP), potential evapotranspiration (ET0) and storm event size. To do this, nearly four years of monitoring data from two full-scale extensive green roofs (with differing substrate depths of 100 mm and 31 mm) are analyzed. The annual performance is then modeled using a common empirical relationship between rainfall and green roof runoff, with the addition of Julian day in one approach, ET0 in another, and both ADWP and ET0 in a third approach. Together the monitoring and modeling results confirm that stormwater retention is highest in warmer months, the green roofs retain more rainfall with longer ADWPs, and the seasonal variations in behavior are more pronounced for the roof with the thinner media than the roof with the deeper media. Overall, the ability of seasonal accounting to improve stormwater retention modeling is demonstrated; modification of the empirical model to include ADWP, and ET0 improves the model R 2 from 0.944 to 0.975 for the thinner roof, and from 0.866 to 0.870 for the deeper roof. Furthermore, estimating the runoff with the empirical approach was shown to be more accurate then using a water balance model, with model R 2 of 0.944 and 0.866 compared to 0.975 and 0.866 for the thinner and deeper roof, respectively. This finding is attributed to the difficulty of accurately parameterizing the water balance model
Recommended from our members
Direct measurements of CO2 flux in the Greenland Sea
During summer 2006 eddy correlation CO2 fluxes were measured in the Greenland Sea using a novel system set-up with two shrouded LICOR-7500 detectors. One detector was used exclusively to determine, and allow the removal of, the bias on CO2 fluxes due to sensor motion. A recently published correction method for the CO2-H2O cross-correlation was applied to the data set. We show that even with shrouded sensors the data require significant correction due to this cross-correlation. This correction adjusts the average CO2 flux by an order of magnitude from -6.7 x 10⁻² mol m⁻² day⁻¹ to -0.61 x 10⁻² mol m⁻² day⁻¹, making the corrected fluxes comparable to those calculated using established parameterizations for transfer velocity
Sea-to-air fluxes from measurements of the atmospheric gradient of dimethylsulfide and comparison with simultaneous relaxed eddy accumulation measurements
We measured vertical profiles of dimethylsulfide (DMS) in the atmospheric marine boundary layer from R/P FLIP during the 2000 FAIRS cruise. Applying Monin-Obukhov similarity theory to the DMS gradients and simultaneous micrometeorological data, we calculated sea-to-air DMS fluxes for 34 profiles. From the fluxes and measured seawater DMS concentrations, we calculated the waterside gas transfer velocity, kw. Gas transfer velocities from the gradient flux approach are within the range of previous commonly used parameterizations of kw as a function of wind speed but are a factor of 2 smaller than simultaneous determinations of transfer velocity using the relaxed eddy accumulation technique. This is the first field comparison of these different techniques for measuring DMS flux from the ocean; the accuracy of the techniques and possible reasons for the discrepancy are discussed
Recommended from our members
Rain impacts on CO2 exchange in the western equatorial Pacific Ocean
The ocean plays a major role in the global carbon cycle through the atmosphere-ocean partitioning of atmospheric carbon dioxide. Rain alters the physics and carbon chemistry at the ocean surface to increase the amount of CO2 taken up by the ocean. This paper presents the results of a preliminary study wherein rain measurements in the western equatorial Pacific are used to determine the enhanced transfer, chemical dilution and deposition effects of rain on air-sea CO2 exchange. Including these processes, the western equatorial Pacific CO2 flux is modified from an ocean source of +0.019 mol CO2 m−2 yr−1 to an ocean sink of −0.078 mol CO2 m−2 yr−1. This new understanding of rain effects changes the ocean's role in the global carbon budget, particularly in regions with low winds and high precipitation
Evaluation of the National Oceanic and Atmospheric Administration/Coupled-Ocean Atmospheric Response Experiment (NOAA/COARE) air-sea gas transfer parameterization using GasEx data
Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C08S11, doi:10.1029/2003JC001831.During the two recent GasEx field experiments, direct covariance measurements of air-sea carbon dioxide fluxes were obtained over the open ocean. Concurrently, the National Oceanic and Atmospheric Administration/Coupled-Ocean Atmospheric Response Experiment air-sea gas transfer parameterization was developed to predict gas transfer velocities from measurements of the bulk state of the sea surface and atmosphere. The model output is combined with measurements of the mean air and sea surface carbon dioxide fugacities to provide estimates of the air-sea CO2 flux, and the model is then tuned to the GasEx-1998 data set. Because of differences in the local environment and possibly because of weaknesses in the model, some discrepancies are observed between the predicted fluxes from the GasEx-1998 and GasEx-2001 cases. To provide an estimate of the contribution to the air-sea flux of gas due to wave-breaking processes, the whitecap and bubble parameterizations are removed from the model output. These results show that moderate (approximately 15 m s−1) wind speed breaking wave gas transfer processes account for a fourfold increase in the flux over the modeled interfacial processes.This work was supported by the NOAA
Office of Global Programs, under the leadership of Dr. Lisa Dilling. WHOI
was supported by the National Science Foundation grant OCE-9711218
Influence of rain on air-sea gas exchange : lessons from a model ocean
Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C08S18, doi:10.1029/2003JC001806.Rain has been shown to significantly enhance the rate of air-water gas exchange in fresh water environments, and the mechanism behind this enhancement has been studied in laboratory experiments. In the ocean, the effects of rain are complicated by the potential influence of density stratification at the water surface. Since it is difficult to perform controlled rain-induced gas exchange experiments in the open ocean, an SF6 evasion experiment was conducted in the artificial ocean at Biosphere 2. The measurements show a rapid depletion of SF6 in the surface layer due to rain enhancement of air-sea gas exchange, and the gas transfer velocity was similar to that predicted from the relationship established from freshwater laboratory experiments. However, because vertical mixing is reduced by stratification, the overall gas flux is lower than that found during freshwater experiments. Physical measurements of various properties of the ocean during the rain events further elucidate the mechanisms behind the observed response. The findings suggest that short, intense rain events accelerate gas exchange in oceanic environments.Funding was provided by a generous grant from
the David and Lucile Packard Foundation
Sea surface pCO2 and O2 in the Southern Ocean during the austral fall, 2008
The physical and biological processes controlling surface mixed layer pCO2 and O2 were evaluated using in situ sensors mounted on a Lagrangian drifter deployed in the Atlantic sector of the Southern Ocean (∼50°S, ∼37°W) during the austral fall of 2008. The drifter was deployed three times during different phases of the study. The surface ocean pCO2 was always less than atmospheric pCO2 (−50.4 to −76.1 μatm), and the ocean was a net sink for CO2 with fluxes averaging between 16.2 and 17.8 mmol C m−2 d−1. Vertical entrainment was the dominant process controlling mixed layer CO2, with fluxes that were 1.8 to 2.2 times greater than the gas exchange fluxes during the first two drifter deployments, and was 1.7 times greater during the third deployment. In contrast, during the first two deployments the surface mixed layer was always a source of O2 to the atmosphere, and air-sea gas exchange was the dominant process occurring, with fluxes that were 2.0 to 4.1 times greater than the vertical entrainment flux. During the third deployment O2 was near saturation the entire deployment and was a small source of O2 to the atmosphere. Net community production (NCP) was low during this study, with mean fluxes of 3.2 to 6.4 mmol C m−2 d−1 during the first deployment and nondetectable (within uncertainty) in the third. During the second deployment the NCP was not separable from lateral advection. Overall, this study indicates that in the early fall the area is a significant sink for atmospheric CO2
Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems
Air-water gas transfer influences CO2 and other climatically important trace gas fluxes on regional and global scales, yet the magnitude of the transfer is not well known. Widely used models of gas exchange rates are based on empirical relationships linked to wind speed, even though physical processes other than wind are known to play important roles. Here the first field investigations are described supporting a new mechanistic model based on surface water turbulence that predicts gas exchange for a range of aquatic and marine processes. Findings indicate that the gas transfer rate varies linearly with the turbulent dissipation rate to the equation image power in a range of systems with different types of forcing - in the coastal ocean, in a macro-tidal river estuary, in a large tidal freshwater river, and in a model (i.e., artificial) ocean. These results have important implications for understanding carbon cycling
- …