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[1] The sea breeze is often a dominant meteorological
feature at the coastline, but little is known about its
estuarine impacts. Measurements at an anchored catamaran
and meteorological stations along the Hudson River and
New York Bay estuarine system are used to illustrate
some basic characteristics and impacts of the feature. The
sea breeze propagates inland, arriving in phase with peak
solar forcing at seaward stations, but several hours later at
up‐estuary stations. Passage of the sea breeze front raises
the water‐to‐air CO2 flux by 1–2 orders of magnitude,
and drives turbulence comparable to spring tide levels in
the upper meter of the water column, where most primary
productivity occurs in this highly turbid system. Modeling
and observational studies often use remotely‐measured
winds to compute air‐water fluxes (e.g., momentum,
CO2), and this leads to a factor of two flux error on sea
breeze days during the study. Citation: Orton, P. M., W. R.
McGillis, and C. J. Zappa (2010), Sea breeze forcing of estuary tur-
bulence and air‐water CO2 exchange, Geophys. Res. Lett., 37,
L13603, doi:10.1029/2010GL043159.

1. Introduction

[2] The sea breeze is a ubiquitous fair‐weather feature
along most of the world’s coastlines, present in warmer
months at mid‐latitudes, and year‐round in tropical and
subtropical regions [Gille et al., 2003]. It arises on sunny
days due to atmospheric pressure differences that develop as
a result of the different solar absorption properties of sea and
land. If no topographic boundaries exist, the sea breeze often
penetrates tens of kilometers inland, and at some locations,
hundreds of kilometers [Miller et al., 2003].
[3] Estuarine air‐water gas exchange and biogeochemistry

are gaining increased attention due to their potential role in
the global carbon cycle [e.g., Dai et al., 2009], as well as
concerns over poorly‐ventilated, low‐oxygen bottom water.
Air‐water exchanges are often primarily controlled by winds
[Wanninkhof, 1992], so the sea breeze likely plays an
important role with these processes. Moreover, recent
studies have begun to demonstrate powerful influences of
the sea breeze on circulation, freshwater residence time, and
in some cases mixed layer depth in estuaries [Geyer, 1997;
Simionato et al., 2005], coastal embayments [Valle‐

Levinson et al., 2003], and river plumes [Hunter et al.,
2007].
[4] Here, we present first‐of‐their‐kind observations of

the inland propagation of the sea breeze past four sites along
an estuary, and detailed measurements of associated air‐
water CO2 exchange and water turbulence. We demonstrate
the air‐water flux errors that can arise from using remote
wind data or daily averages in modeling or observational
studies of systems with sea breezes. We conclude by using
spectral analysis to look at seasonality and quantify the
proportion of wind variance in the diurnal band, and briefly
discuss systems likely to have similar sea breeze impacts.

2. Field Observations

[5] A 1.85 m long Self‐Orienting Catamaran (SOCa) with
air‐water exchange and turbulence measurements was
anchored frequently at a 5.1 m deep site on the Hudson
River estuary from 23 September through 2 November,
2007 (year‐day 265.0–306.0 (Figure 1)). An acoustic
Doppler velocimeter mounted on a forward boom sampled
water velocity at 50 cm depth at 25 Hz, and the Inertial
Dissipation Method (IDM) was used with the frozen field
assumption to estimate 10 minute averages of the rate of
dissipation (") of turbulent energy [Orton, 2010; Zappa et
al., 2003]. A keel rotated SOCa so that the boom was ori-
ented into the current to avoid wake biases. Periods with a
wave orbital speed greater than 40% of mean flow speed
were omitted to avoid biases from aliasing of wave energy
into the inertial subrange [Lumley and Terray, 1983].
Nearby, a bottom‐mounted acoustic Doppler current profiler
(ADCP) measured vertical profiles of velocity at 1 Hz and
25 cm vertical resolution, permitting computation of shear
production (P) of turbulent energy [e.g., Orton and Visbeck,
2009]. Five 12‐hour time series with vertical CTD profiling
(salinity, temperature) were also performed from a small
anchored boat.
[6] SOCa also provided automated CO2 profiling using a

gas valve switching system, and water‐to‐air CO2 flux
(FCO2) estimates using the Gradient Flux Technique (GFT)
[Orton, 2010; Zappa et al., 2003]. The profiling system
measured CO2 partial pressure (pCO2) using a non‐disper-
sive infrared sensor (NDIR), sampling air from atmospheric
heights of 0.4 and 2.25 m and from the headspace of an
equilibrator receiving pumped surface water (0.2 m depth).
Timeseries measurements were made of wind and air tem-
perature with a sonic anemometer (height 1.2 m), humidity
and pCO2 with an NDIR (height 2.25 m), and water tem-
perature (depth 0.2 m). GFT utilizes the fact that a con-
stituent’s air‐water exchange is proportional to its vertical
gradient in the atmospheric surface layer, and corrects for
the smearing of the gradient by turbulent mixing. The
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required air‐water heat and momentum fluxes and Monin‐
Obukhov Similarity Theory parameterizations of turbulent
diffusivity were all computed using the MATLAB COARE
3.0 bulk flux toolbox [Fairall et al., 2003].
[7] Additional measurements utilized in this paper include

our own meteorological station at Piermont Pier (anemom-
eter at 8 m height), and National Data Buoy Center (NDBC)
stations at Robbins Reef lighthouse in Upper New York Bay
(code ROBN, anemometer at 22 m height) and Sandy Hook
(code SDHN, at 9 m height), all mapped in Figure 1. Our
Piermont Pier station is a tripod on top of a one‐story flat‐
top building, with measurements that include a cup/vane
anemometer at 8 m height above mean water level, solar
radiation and air temperature. When inter‐compared in this
paper, wind data are transformed to 10 m height wind (U10)
by assuming neutral atmospheric conditions and a sea surface
aerodynamic roughness length of 3 × 10−4 m, an approxi-
mation for ∼6 m s−1 along‐channel winds and ∼30 cm wind
seas [Drennan et al., 2005], typical of the Hudson’s sea
breeze. Uncertainty of a factor of 10 in roughness leads to
uncertainty in the U10 estimates of only ±10% or less, and
almost no error for the sites near 10 m height.
[8] Sea breeze days are defined using a three‐stage con-

ditional filter similar to that of Furberg et al. [2002],
designed to identify days with a daytime onset of a surface
onshore wind that is related to the cross‐shore air temper-
ature gradient. The stages require that (1) the sunrise‐to‐

sunset mean air temperature over land must be greater than
the temperature over the sea, (2) the wind must blow onshore
for at least two hours between [sunrise +2h] to [sunset +2h],
and (3) a majority of winds from [sunrise −8h] to [sunrise
+2h] must be calm (below 2 m s−1) or offshore.

3. Results and Discussion

[9] On sunny, warm days during the field study, a land‐
sea temperature gradient built up by mid‐morning and wind
observations showed characteristics of a sea breeze, with
south winds arriving at the measurement sites by mid‐
afternoon (Figure 1). Cooling or moderating temperatures
often followed the arrival of the south winds. There were a
total of seven sea breeze days, year‐days 269, 272, 274, 275,
276, 277 and 279, for which the general pattern and estua-
rine impacts of winds are described below.
[10] There was often a well‐defined up‐estuary delay in

arrival of the south wind, to at least the furthest station
northward, 71 km up‐estuary (Figures 1–2). This suggests
the marine layer was propagating as a gravity current, as sea
breezes typically do over land [Miller et al., 2003] and land
breezes over the ocean [Gille et al., 2005]. Moreover, wind
and temperature changes were often abrupt, suggesting a
front formed at the leading edge, an additional feature of sea
breezes and gravity currents [Miller et al., 2003]. The sea
breeze wind pattern was typically also present at LaGuardia
Airport (LGA; Figure 1), so the marine layer may have
traveled the over‐land route northward past LaGuardia to
get to Piermont, or up the steep‐walled Hudson which is
bordered by 100 m or greater topography and infrastructure
in most places.

Figure 1. Study area map, with wind and air temperature
data for a strong sea breeze day. (a) The Hudson River
and New York Bay estuarine system, showing the Sandy
Hook, Robbins’ Reef (ROBN), and Piermont Pier meteoro-
logical stations, and the SOCa catamaran location. Wind
velocity vectors and local air temperature data are shown
on the right: at (b) SOCa, (c) Piermont, (d) ROBN, and
(e) Sandy Hook, rotated by 30° clockwise to account for
the different principal axis of the diurnal winds at that site.
(f) Air temperatures over the coastal Atlantic Ocean in New
York Bight (NOAA buoy 44025, 40°15′N, 73°10′W) and
inland at Newark (EWR). Similar wind patterns were typi-
cally also observed at LaGuardia Airport (LGA).

Figure 2. Observations during the same period shown in
Figure 1 and the subsequent three days: (a) water‐to‐air
CO2 flux estimates (FCO2) including SOCa observations, as
well as those computed from a quadratic wind‐based
parameterization [Wanninkhof, 1992] with local winds
(W92soca) or remote winds (W92robn), (b) SOCa water‐side
CO2 partial pressure (pCO2) and solar radiation, (c) water
temperature (shading) and depth (black line), and (d, e) wind
velocity vectors and air temperatures at SOCa and ROBN.
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[11] The observed lag of the sea breeze with distance up
the Hudson is useful for estimating marine layer height by
inverting the gravity wave propagation speed equation,
Usb = g(g′h)0.5, where h is a scale height, g′ = g(D�/�) is the
reduced gravity, D� is the inversion strength, � is atmo-
spheric potential temperature in Kelvin, and g is ∼0.62
[Gille et al., 2005]. The lags in arrival of the wind front over
the 55 km distance from ROBN to SOCa, were 3.34 and
3.64 h on year‐days 274 and 277, suggesting propagation
speeds of 4.6 and 4.2 m s−1, respectively. Using these
speeds with the observed afternoon mean land‐sea temper-
ature difference of 3°C (Figure 1f) and 6°C gives scale
heights (h) of 470 and 280 m. Prior observations of New
York area sea breeze inversion heights have been from 100–
300 m [Childs and Raman, 2005; Novak and Colle, 2006;
Thompson et al., 2007]. The higher h on year‐day 274 may
explain the relatively robust inland propagation on that day,
making the feature less sensitive to urban roughness ele-
ments that have been shown to slow propagation [Childs
and Raman, 2005].

3.1. Sea Breeze Driven Turbulence and Air‐Water CO2

Exchange

[12] The diurnal wind cycle had a dominant effect on the
water‐to‐air CO2 flux (FCO2) on sea breeze days during the
study (Figure 2). From Piermont northward, sea breeze days
typically had light winds in the middle of the day, with
glassy or light chop sea surface conditions and SOCa FCO2

values below 5 mmol m−2 d−1. When the sea breeze arrived
at SOCa (U10 = 5.0–7.7 m s−1), wind wave breaking was
often observed, and FCO2 rose by a factor of 10–100 to as
much as 73 mmol m−2 d−1.
[13] The sea breeze can drive near‐surface turbulence

comparable to spring tide levels, but with daily recurrence
(Figure 3). Mean dissipation rates (") at 50 cm depth associ-
atedwith 5.0–7.7m s−1 winds (U10) andweak currents (below
0.4 m s−1) during the entire study were 8.0 × 10−6 W kg−1.
These are comparable to " at the same depth during peak

spring tides with weak winds (U10 below 4 m s−1), which
averaged 5.2 × 10−6 W kg−1. Peak spring tide is defined as
periods within two days of the month’s strongest spring tide,
with depth‐average ebb tide currents from 80–100% of tidal
maxima (spring ebbs had stronger near‐surface turbulence
than floods). The turbulent shear production rate (P) is
closely related to and typically scales with " [e.g., Gross and
Nowell, 1985], and the average spring tide upper water
column P is also similar to the sea breeze driven ". The shoal
site where SOCa was deployed is 5.1 m deep, but a 100‐day
current profiler deployment east of Piermont Pier in the
Hudson’s deep channel (14 m) where currents are stronger
[Orton and Visbeck, 2009] exhibits similar upper water
column P levels (Figure 3). For comparison, wall‐layer
modeled dissipation levels at 50 cm depth for a quadratic drag
coefficient of 0.0012 and winds from 5.0–7.7 m s−1 are 1.1–
4.1 × 10−6 W kg−1, but additional superimposed processes
(e.g., wind wave breaking) likely explain the higher
observed sea breeze driven ".
[14] The diurnal phasing of the sea breeze is particularly

interesting in light of diurnal cycles of solar heating, solar
heating enhanced stratification, and primary production. The
Hudson is turbid, 90% of light is often attenuated in the
upper meter, and light limitation has been shown to be a
very important control on photosynthesis [Malone, 1977].
Calm waters at mid‐day enabled solar heating to warm
surface waters by up to 2.2°C (Figure 2), and the vertical
temperature gradient typically enhanced density stratifica-
tion by 50–100%, relative to salinity stratification alone.
Water pCO2 at 20 cm depth decreased during these periods
by as much as 42% (year‐day 276.5–276.7 (Figure 2)). This
was likely due to primary production, as a 2°C change in
temperature would only result in a 5% change in CO2 sol-
ubility [Wanninkhof, 1992].

3.2. Errors From Under‐Sampling or Using Remote
Winds

[15] Modeling and observational studies often use remote
[e.g., Hellweger et al., 2004; Yan et al., 2008] or daily‐
average [e.g., Yan et al., 2008] wind forcing to parameterize
air‐water exchanges, or measure gas exchange on daily or
often longer timescales with deliberate chemical tracer
injection. Using remote wind data with a quadratic param-
eterization can lead to large errors in estimated air‐water
exchanges (e.g., CO2, momentum). The Figure 2a shows
four days of measured FCO2 at the SOCa site, compared
with estimates from a quadratic wind‐based parameteriza-
tion using local winds [Wanninkhof, 1992], and from the
parameterization using remote wind data measured at the
ROBN station. Using the parameterization with local winds
for all the sea breeze days gives a net FCO2 estimate 5%
above the in situ measurements, whereas using the param-
eterization with remote winds gives a net FCO2 estimate 92%
above the in situ measurements and marked differences in
diurnal phasing of the flux. Until 2006, there were no
operational wind data measurements on the Hudson or New
York Bay, and this is still common for many estuaries.
[16] Using daily averages will obscure diurnal phasing

effects important to biogeochemical processes, and can lead
to overestimation of the net flux. The timing of the sea
breeze can reduce the net FCO2, relative to steady winds, if it
arrives at the time of day that photosynthesis has minimized
the surface water pCO2 (e.g., year‐day 276.7). Moreover,

Figure 3. Comparison of turbulence levels resulting from
sea breezes and spring tides. Average near‐surface dissipa-
tion (") and shear production (P) are shown for peak spring
tide currents over the shoal at SOCa (“shoal tide”) and peak
spring tide currents over the deep channel (“channel tide”),
and compared with periods with typical peak sea breeze
wind speeds of 5.0–7.7 m s−1. Sea breeze P is not shown
because waves bias the P measurement, and channel tide "
was not measured.
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new measurements from August 2009 at Piermont Pier
show that pCO2 there can vary from highly supersaturated
(2000 matm) to highly undersaturated (200 matm) from
early morning to late afternoon, along with supersaturation
of oxygen. Strong diurnal cycles in pCO2 have also been
observed in other estuaries [e.g., Dai et al., 2009].

3.3. Broader Context

[17] The seasonality and along‐estuary variation of diurnal
band winds are illustrated with wind velocity spectra in
Figure 4. Diurnal band winds can dominate the wind vari-
ability on the Hudson for as much as a week at a time in
spring, summer or early fall. Integrating the spectra, the
diurnal band (0.75 < f < 1.3 cyc d−1) provides 20% of total
wind variance at both ROBN and Piermont during sea breeze
season. Viewing all the available data from these sites, the sea
breeze is a more reliable mid‐day and afternoon feature at
Robbins Reef and Sandy Hook. At Piermont, the phase lag
and duration of the sea breeze are highly erratic, and the
reverse process, the land breeze, provides some of the diurnal
wind energy. The erratic phase lag is likely due to the long
propagation distance to that site, as many prior studies have
shown a high level of sensitivity of deep inland propagation
to ambient synoptic winds [Miller et al., 2003].
[18] Sea breezes are a common and in some cases powerful

forcing agent in many estuaries and coastal regions [e.g.,
Geyer, 1997; Hunter et al., 2007; Simionato et al., 2005;
Valle‐Levinson et al., 2003], many of which likely exhibit
similar impacts on air‐water exchanges and turbulence to
those reported here. A quick survey of a few other estuaries
with good NDBC buoy coverage shows that the Strait of Juan
de Fuca is a system with stronger sea breezes (often 10 m s−1)
and more robust and predictable inland propagation, likely
due to strong topographic trapping of the marine layer by

mountains to the north and south. A common summertime
wind pattern is that west winds are maximal at ∼1700 h local
time near the ocean and maximal at ∼2200 h at the eastern
end of the Strait, consistent with propagation at 8.0 m s−1.
[19] In conclusion, we have demonstrated that the sea

breeze propagates inland and can reach at least 71 km up the
Hudson/NY Bay estuarine system. Sea breeze winds can
raise FCO2 by 1–2 orders of magnitude, and raise turbulence
levels in the upper meter of the water column to spring tide
levels on a daily recurring basis. Using remote wind data
from the nearest NDBC site in a quadratic wind‐based
parameterization led to overestimation of FCO2 by 92% for
sea breeze days during the study, due to strong spatial wind
variability. These results demonstrate that physical and
biogeochemical studies for certain estuaries should measure
or model atmospheric forcing on spatial and temporal scales
necessary to resolve propagating sea breezes.
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