286 research outputs found

    Influence of Must Supplementation on Growth of Pediococcus spp. after Alcoholic Fermentation

    Get PDF
    One factor potentially affecting growth of wine spoilage microbes (e.g., Pediococcus spp.) is the presence of nutrients not consumed during alcoholic fermentation by Saccharomyces cerevisiae. To assess the impactof must nutrient supplementation on Pediococcus spp., synthetic grape musts containing low (55.2 mg N/L), medium (250 mg N/L), or high (530 mg N/L) concentrations of yeast assimilable nitrogen (YAN) were fermented by S. cerevisiae. Upon cessation of fermentative activity P. damnosus OW-2, P. inopinatus OW-8, P. parvulus WS-7C, WS-29A, OW-1, or P. pentosaceus ATCC 33316 were inoculated at 104 to 105 cfu/mL. With the exceptions of OW-1 and OW-2, none of the other species or strains grew in the synthetic wines unless yeast extract or peptone was added, suggesting the absence of an essential nutrient.  Experiments were replicated using Cabernet Sauvignon musts containing low (66.9 mg N/L), medium(219 mg N/L), and high (438 mg N/L) YAN. In general, wines containing the greatest residual amino acid concentrations (high YAN) supported better growth of the aforementioned Pediococcus spp. However, low YAN wines containing negligible residual nitrogen achieved similar populations after a short period of initial inhibition, suggesting that ‘excessive’ nitrogen supplementation to musts does not have a large impact on growth of pediococci post alcoholic fermentation

    Fluid structure interaction analysis: vortex shedding induced vibrations

    Get PDF
    Abstract Fluid Structure Interaction (FSI) numerical modelling requires an efficient workflow to properly capture the physics involved. Computational Structural Mechanics (CSM) and Computation Fluid Dynamics (CFD) have to be coupled and at the moment there is a lack of monolithic solvers capable to tackle industrial applications that involves high fidelity models which mesh can be comprised of hundred millions of cells. This paper shows an efficient approach based on standard commercial tools. The FEM solver ANSYS® Mechanical™ is used to extract a given number of eigenmodes. Then the modal shapes are imported in the CFD solver Fluent® using the Add On RBF Morph™. Updating the modal coordinates it is possible to adapt the shape of the model by taking into account the elasticity of the CFD model. Transient analysis is faced using a time marching solution by updating the shape of the mesh at each time step (weak coupling, evaluated as single DOF systems and integrating modal forces over the CFD grid). Numerical performances and solution accuracy of this approach are analyzed on a practical application (NACA0009 Hydrofoil) for which experimental data are available. A comparison between proposed method and experiment is provided. Transient coupled solver is used for the computation of eigenvalues in water by post processing the free vibration response in calm fluid

    Confirmation of ξ1 CMa's ultra-slow rotation:magnetic polarity reversal and a dramatic change in magnetospheric UV emission lines

    Get PDF
    The magnetic beta Cep pulsator xi^1 CMa has the longest rotational period of any known magnetic B-type star. It is also the only magnetic B-type star with magnetospheric emission that is known to be modulated by both rotation and pulsation. We report here the first unambiguous detection of a negative longitudinal magnetic field in xi^1 CMa (=-87 +/- 2 G in 2019 and =-207 +/- 3 G in 2020), as well as the results of ongoing monitoring of the star's Halpha variability. We examine evidence for deviation from a purely dipolar topology. We also report a new HST UV spectrum of xi^1 CMa obtained near magnetic null that is consistent with an equatorial view of the magnetosphere, as evidenced by its similarity to the UV spectrum of beta Cep obtained near maximum emission. The new UV spectrum of xi^1 CMa provides additional evidence for the extremely long rotation period of this star via comparison to archival data.Comment: 13 pages, Accepted 2021 May 14 to Monthly Notices of the Royal Astronomical Society 202

    Research review: young people leaving care

    Get PDF
    This paper reviews the international research on young people leaving care. Set in the context of a social exclusion framework, it explores young people's accelerated and compressed transitions to adulthood, and discusses the development and classification of leaving care services in responding to their needs. It then considers the evidence from outcome studies and argues that adopting a resilience framework suggests that young people leaving care may fall into three groups: young people 'moving on', 'survivors' and 'victims'. In concluding, it argues that these three pathways are associated with the quality of care young people receive, their transitions from care and the support they receive after care

    Models of peer support to remediate post-intensive care syndrome: A report developed by the SCCM Thrive International Peer Support Collaborative

    Get PDF
    Objective: Patients and caregivers can experience a range of physical, psychological, and cognitive problems following critical care discharge. The use of peer support has been proposed as an innovative support mechanism. Design: We sought to identify technical, safety and procedural aspects of existing operational models of peer support, among the Society of Critical Care Medicine Thrive Peer Support Collaborative. We also sought to categorize key distinctions between these models and elucidate barriers and facilitators to implementation. Subjects: 17 Thrive sites from the USA, UK, and Australia were represented by a range of healthcare professionals. Interventions: Via an iterative process of in-person and email/conference calls, members of the Collaborative, defined the key areas on which peer support models could be defined and compared; collected detailed self-reports from all sites; reviewed the information and identified clusters of models. Barriers and challenges to implementation of peer support models were also documented. Results: Within the Thrive Collaborative, six general models of peer support were identified: Community based, Psychologist-led outpatient, Models based within ICU follow-up clinics, Online, Groups based within ICU and Peer mentor models. The most common barriers to implementation were: recruitment to groups, personnel input and training: sustainability and funding, risk management and measuring success. Conclusion: A number of different models of peer support are currently being developed to help patients and families recover and grow in the post-critical care setting

    Effects of mineralogy, chemistry and physical properties of basalts on carbon capture potential and plant-nutrient element release via enhanced weathering

    Get PDF
    Mafic igneous rocks, such as basalt, are composed of abundant calcium- and magnesium-rich silicate minerals widely proposed to be suitable for scalable carbon dioxide removal (CDR) by enhanced rock weathering (ERW). Here, we report a detailed characterization of the mineralogy, chemistry, particle size and surface area of six mined basalts being used in large-scale ERW field trials. We use 1-D reactive transport modelling (RTM) of soil profile processes to simulate inorganic CDR potential via cation flux (Mg2+, Ca2+, K+ and Na+) and assess the release of the essential plant nutrients phosphorus (P) and potassium (K) for a typical clay-loam agricultural soil. The basalts are primarily composed of pyroxene and plagioclase feldspar (up to 71 wt%), with accessory olivine, quartz, glass and alkali feldspar. Mean crushed particle size varies by a factor of 10, owing to differences in the mining operations and grinding processes. RTM simulations, based on measured mineral composition and N2-gas BET specific surface area (SSA), yielded potential CDR values of between c. 1.3 and 8.5 t CO2 ha−1 after 15 years following a baseline application of 50 t ha−1 basalt. The RTM results are comparative for the range of inputs that are described and should be considered illustrative for an agricultural soil. Nevertheless, they indicate that increasing the surface area for slow-weathering basalts through energy intensive grinding prior to field application in an ERW context may not be warranted in terms of additional CDR gains. We developed a function to convert CDR based on widely available and easily measured rock chemistry measures to more realistic determinations based on mineralogy. When applied to a chemistry dataset for >1300 basalt analyses from 25 large igneous provinces, we simulated cumulative CDR potentials of up to c. 8.5 t CO2 ha−1 after 30 years of weathering, assuming a single application of basalt with a SSA of 1 m2 g−1. Our RTM simulations suggest that ERW with basalt releases sufficient phosphorus (P) to substitute for typical arable crop P-fertiliser usage in Europe and the USA offering potential to reduce demand for expensive rock-derived P
    • …
    corecore