1,980 research outputs found

    Energy spectra of elements with 18 or = Z or = 28 between 10 and 300 GeV/amu

    Get PDF
    The HEAO-3 Heavy Nuclei Experiment is composed of ionization chambers above and below a plastic Cerenkov counter. The energy dependence of the abundances of elements with atomic number, Z, between 18 and 28 at very high energies where they are rare and thus need the large area x time are measured. The measurements of the Danish-French HEAO-3 experiment (Englemann,, et al., 1983) are extended to higher energies, using the relativistic rise of ionization signal as a measure of energy. Source abundances for Ar and Ca were determined

    Tailored nanodiamonds for hyperpolarized ¹³C MRI

    Get PDF
    Nanodiamond is poised to become an attractive material for hyperpolarized ¹³C magnetic resonance imaging if large nuclear polarizations can be achieved without the accompanying rapid spin-relaxation driven by paramagnetic species. Here we report enhanced and long-lived ¹³C polarization in synthetic nanodiamonds tailored by acid-cleaning and air-oxidation protocols. Our results separate the contributions of different paramagnetic species on the polarization behavior, identifying the importance of substitutional nitrogen defect centers in the nanodiamond core. These results are likely of use in the development of nanodiamond-based imaging agents with size distributions of relevance for examining biological processes

    Design of a hydrophobic tripeptide that self-assembles into amphiphilic superstructures forming a hydrogel biomaterial

    Get PDF
    We report the rational design of a heterochiral hydrophobic tripeptide self-assembling into amphiphilic D-superstructures that yield a self-supportive hydrogel at physiological pH. The material endures cell culture conditions and sustains fibroblast proliferation. Tripeptide superstructures are thoroughly analysed by several techniques

    Clustering of galaxies at 3.6 microns in the Spitzer Wide-area Infrared Extragalactic legacy survey

    Get PDF
    We investigate the clustering of galaxies selected in the 3.6 micron band of the Spitzer Wide-area Infrared Extragalactic (SWIRE) legacy survey. The angular two-point correlation function is calculated for eleven samples with flux limits of S_3.6 > 4-400 mujy, over an 8 square degree field. The angular clustering strength is measured at >5-sigma significance at all flux limits, with amplitudes of A=(0.49-29)\times10^{-3} at one degree, for a power-law model, A\theta^{-0.8}. We estimate the redshift distributions of the samples using phenomological models, simulations and photometric redshifts, and so derive the spatial correlation lengths. We compare our results with the GalICS (Galaxies In Cosmological Simulations) models of galaxy evolution and with parameterized models of clustering evolution. The GalICS simulations are consistent with our angular correlation functions, but fail to match the spatial clustering inferred from the phenomological models or the photometric redshifts. We find that the uncertainties in the redshift distributions of our samples dominate the statistical errors in our estimates of the spatial clustering. At low redshifts (median z<0.5) the comoving correlation length is approximately constant, r_0=6.1\pm0.5h^{-1} Mpc, and then decreases with increasing redshift to a value of 2.9\pm0.3h^{-1} Mpc for the faintest sample, for which the median redshift is z=1. We suggest that this trend can be attributed to a decrease in the average galaxy and halo mass in the fainter flux-limited samples, corresponding to changes in the relative numbers of early- and late-type galaxies. However, we cannot rule out strong evolution of the correlation length over 0.5<z<1.Comment: 14 pages, 9 (colour) figures. Published in MNRA

    Energy Spectra of Elements with 18 ≤ Z ≤ 28 Between 10 and 300 GeV/amu

    Get PDF
    The HEAO-3 Heavy Nuclei Experiment (Binns, et al., 1981) is composed of ionization chambers above and below a plastic Cherenkov counter. We have measured the energy dependence of the abundances of elements with atomic number, Z, between 18 and 28 at very high energies where they are rare and thus need the large area x time of this experiment. We extend the measurements of the Danish French HEAO-3 experiment (Englemann, et al., 19S3) to higher energies, using the relativistic rise of ionization signal as a measure of energy, and determine source abundances for Ar and Ca

    Monitoring lower limb biomechanical asymmetry and psychological measures in athletic populations - A scoping review

    Get PDF
    Background: Lower limb biomechanics, including asymmetry, are frequently monitored to determine sport performance level and injury risk. However, contributing factors extend beyond biomechanical and asymmetry measures to include psychological, sociological, and environmental factors. Unfortunately, inadequate research has been conducted using holistic bio-psycho-social models to characterize sport performance and injury risk. Therefore, this scoping review summarized the research landscape of studies concurrently assessing measures of lower limb biomechanics, asymmetry, and introspective psychological state (e.g., pain, fatigue, perceived exertion, stress, etc.) in healthy, competitive athletes. Methods: A systematic search of Medline, Embase, CINAHL, SPORT Discus, and Web of Science Core Collections was designed and conducted in accordance with PRISMA guidelines. 51 articles were included in this review. Results: Significant relationships between biomechanics (k = 22 studies) or asymmetry (k = 20 studies) and introspective state were found. Increased self-reported pain was associated with decreased range of motion, strength, and increased lower limb asymmetry. Higher ratings of perceived exertion were related to increased lower limb asymmetry, self-reported muscle soreness, and worse jump performance. Few studies (k = 4) monitored athletes longitudinally throughout one or more competitive season(s). Conclusion: This review highlights the need for concurrent analysis of introspective, psychological state, and biomechanical asymmetry measures along with longitudinal research to understand the contributing factors to sport performance and injury risk from bio-psycho-social modeling. In doing so, this framework of bio-psycho-social preventive and prognostic patient-centered practices may provide an actionable means of optimizing health, well-being, and sport performance in competitive athletes
    corecore