6,675 research outputs found

    FertilScore: A tool for active management of infertility

    Get PDF
    Background: Active management of infertility involves the reduction of the diagnostic workup time for infertility. However, the timing of decision for assisted conception by the couple and medical personnel is often challenging. FertilScore was developed to simplify this decision timing and make the process more objective.Materials and Methods: A scoring tool was developed using the Delphi method. This involved 3 experts in assisted conception assigning scores to a list of the etiological factors for infertility. The tool was administered to 35 couples presenting to a gynecology clinic and 15 couples who completed the tool on that hospital’s website. Grading for couple’s need for in vitro fertilization (IVF) was low (1–9), moderate (10–14), and high (15–96). The information obtained has been analyzed.Results: Twenty‑four (48%) couples had low need for IVF, 17 (34%) moderate need, and 9 (18%) high need. Seventeen were true positive and 9 false positive. There was no false negative and 24 were true negatives. The sensitivity of the tool was 100%, specificity 72.7%, positive predictive value 65.4%, negative predictive value 100%, and accuracy 82%.Conclusion: FertilScore is sensitive at identifying infertile couples that would require IVF and should help in reducing the time and resources deployed to evaluation. The tool would need to be validated in a larger multicenter population.Keywords: Active management; FertilScore; infertility; scoring too

    AKARI Detections of Hot Dust in Luminous Infrared Galaxies

    Full text link
    We present a new sample of active galactic nuclei (AGNs) identified using the catalog of the AKARI Mid-infrared(MIR) All-Sky Survey. Our MIR search has an advantage in detecting AGNs that are obscured at optical wavelengths due to extinction. We first selected AKARI 9micron excess sources with F(9micron)/F(K_S)>2 where K_S magnitudes were taken from the Two Micron All Sky Survey. We then obtained follow-up near-infrared spectroscopy with the AKARI/IRC, to confirm that the excess is caused by hot dust. We also obtained optical spectroscopy with the Kast Double Spectrograph on the Shane 3-m telescope at Lick Observatory. On the basis of on these observations, we detected hot dust with a characteristic temperature of ~500K in two luminous infrared galaxies. The hot dust is suspected to be associated with AGNs that exhibit their nonstellar activity not in the optical, but in the near- and mid-infrared bands, i.e., they harbor buried AGNs. The host galaxy stellar masses of 4-6 x 10^9 M_sun are small compared with the hosts in optically-selected AGN populations. These objects were missed by previous surveys, demonstrating the power of the AKARI MIR All-Sky Survey to widen AGN searches to include more heavily obscured objects. The existence of multiple dusty star clusters with massive stars cannot be completely ruled out with our current data.Comment: 15 pages, 4 figures, to be published in Astronomy & Astrophysic

    Hyperfine Anomaly of Be Isotopes and Anomalous Large Anomaly in 11^{11}Be

    Get PDF
    A new result of investigations of the hyperfine structure (hfs) anomaly in Be isotopes is presented. The hfs constant for 11^{11}Be is obtained by using the core plus neutron type wave function: 2s12>+1d52×2+;1/2+> |2s_{1\over 2}>+|1d_{5\over2}\times 2^+ ; {1/2}^{+}> . A large hfs anomaly of 11^{11}Be is found, which is mainly due to a large radius of the halo single particle state.Comment: 14 pages, Late

    Itinerant-Electron Magnet of the Pyrochlore Lattice: Indium-Doped YMn2Zn20

    Full text link
    We report on a ternary intermetallic compound, "YMn2Zn20", comprising a pyrochlore lattice made of Mn atoms. A series of In-doped single crystals undergo no magnetic long-range order down to 0.4 K, in spite of the fact that the Mn atom carries a local magnetic moment at high temperatures, showing Curie-Weiss magnetism. However, In-rich crystals exhibit spin-glass transitions at approximately 10 K due to a disorder arising from the substitution, while, with decreasing In content, the spin-glass transition temperature is reduced to 1 K. Then, heat capacity divided by temperature approaches a large value of 280 mJ K-2 mol-1, suggesting a significantly large mass enhancement for conduction electrons. This heavy-fermion-like behavior is not induced by the Kondo effect as in ordinary f-electron compounds, but by an alternative mechanism related to the geometrical frustration on the pyrochlore lattice, as in (Y,Sc)Mn2 and LiV2O4, which may allow spin entropy to survive down to low temperatures and to couple with conduction electrons.Comment: 5 pages, 4 figures, J. Phys. Soc. Jpn., in pres

    On the disappearance of a cold molecular torus around the low-luminosity active galactic nucleus of NGC 1097

    Full text link
    We used the Atacama Large Millimeter/submillimeter Array (ALMA) to map the CO(3-2) and the underlying continuum emissions around the type 1 low-luminosity active galactic nucleus (LLAGN; bolometric luminosity 1042\lesssim 10^{42} erg~s1^{-1}) of NGC 1097 at 10\sim 10 pc resolution. These observations revealed a detailed cold gas distribution within a 100\sim 100 pc of this LLAGN. In contrast to the luminous Seyfert galaxy NGC 1068, where a 7\sim 7 pc cold molecular torus was recently revealed, a distinctively dense and compact torus is missing in our CO(3-2) integrated intensity map of NGC 1097. Based on the CO(3-2) flux, the gas mass of the torus of NGC 1097 would be a factor of 23\gtrsim 2-3 less than that found for NGC 1068 by using the same CO-to-H2_2 conversion factor, which implies less active nuclear star formation and/or inflows in NGC 1097. Our dynamical modeling of the CO(3-2) velocity field implies that the cold molecular gas is concentrated in a thin layer as compared to the hot gas traced by the 2.12 μ\mum H2_2 emission in and around the torus. Furthermore, we suggest that NGC 1097 hosts a geometrically thinner torus than NGC 1068. Although the physical origin of the torus thickness remains unclear, our observations support a theoretical prediction that geometrically thick tori with high opacity will become deficient as AGNs evolve from luminous Seyferts to LLAGNs.Comment: 9 pages, 5 figures. Accepted for publication in ApJ

    g-factor of a tightly bound electron

    Get PDF
    We study the hyperfine splitting of an electron in hydrogen-like 209Bi82+^{209}Bi ^{82+} . It is found that the hfs energy splitting can be explained well by considering the g-factor reduction due to the binding effect of a bound electron. We determine for the first time the experimental value of the magnetic moment of a tightly bound electron.Comment: 6 pages, Latex, Phys. Rev. A in pres

    Knot invariants in lens spaces

    Full text link
    In this survey we summarize results regarding the Kauffman bracket, HOMFLYPT, Kauffman 2-variable and Dubrovnik skein modules, and the Alexander polynomial of links in lens spaces, which we represent as mixed link diagrams. These invariants generalize the corresponding knot polynomials in the classical case. We compare the invariants by means of the ability to distinguish between some difficult cases of knots with certain symmetries

    Molecular Gas Dynamics in NGC 6946: a Bar-driven Nuclear Starburst "Caught in the Act"

    Get PDF
    We present high angular resolution ~1" and 0.6" mm-interferometric observations of the 12CO(1-0) and 12CO(2-1) line emission in the central 300pc of the late-type spiral galaxy NGC6946. The data, obtained with the IRAM Plateau de Bure Interferometer (PdBI), allow the first detection of a molecular gas spiral in the inner ~10" (270pc) with a large concentration of molecular gas (M(H_2) ~1.6x10^7M_sun) within the inner 60pc. This nuclear clump shows evidence for a ring-like geometry with a radius of ~10pc as inferred from the p-v diagrams. Both the distribution of the molecular gas as well as its kinematics can be well explained by the influence of an inner stellar bar of about 400pc length. A qualitative model of the expected gas flow shows that streaming motions along the leading sides of this bar are a plausible explanation for the high nuclear gas density. Thus, NGC6946 is a prime example of molecular gas kinematics being driven by a small-scale, secondary stellar bar.Comment: accepted for publication in the Astrophysical Journal; 47 pages, 17 figures, 1 tabl
    corecore