12,405 research outputs found
A nonlinear drift which leads to -generalized distributions
We consider a system described by a Fokker-Planck equation with a new type of
momentum-dependent drift coefficient which asymptotically decreases as
for a large momentum . It is shown that the steady-state of this system is a
-generalized Gaussian distribution, which is a non-Gaussian
distribution with a power-law tail.Comment: Submitted to EPJB. 8 pages, 2 figures, dedicated to the proceedings
of APFA
Dynamical Susceptibility in KH2PO4-type Crystals above and below Tc
The time dependent cluster approximation called the path probability method
(PPM) is applied to a pseudo-spin Ising Hamiltonian of the Slater-Takagi model
for KH2PO4-type hydrogen-bonded ferroelectrics in order to calculate the
homogeneous dynamical susceptibility above and below the ferroelectric
transition temperature. Above the transition temperature all the calculations
are carried out analytically in the cactus approximation of the PPM. Below the
transition temperature the dynamical susceptibility is also calculated
accurately since the analytical solution of spontaneous polarization in the
ferroelectric phase can be utilized. When the temperature is approached from
both sides of the transition temperature, only one of relaxation times shows a
critical slowing down and makes a main contribution to the dynamical
susceptibility. The discrepancy from Slater model (ice-rule limit) is discussed
in comparison with some experimental data.Comment: 8 pages, 10 figure
The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collision experiments
The growth processes from protoplanetary dust to planetesimals are not fully
understood. Laboratory experiments and theoretical models have shown that
collisions among the dust aggregates can lead to sticking, bouncing, and
fragmentation. However, no systematic study on the collisional outcome of
protoplanetary dust has been performed so far so that a physical model of the
dust evolution in protoplanetary disks is still missing. We intend to map the
parameter space for the collisional interaction of arbitrarily porous dust
aggregates. This parameter space encompasses the dust-aggregate masses, their
porosities and the collision velocity. With such a complete mapping of the
collisional outcomes of protoplanetary dust aggregates, it will be possible to
follow the collisional evolution of dust in a protoplanetary disk environment.
We use literature data, perform own laboratory experiments, and apply simple
physical models to get a complete picture of the collisional interaction of
protoplanetary dust aggregates. In our study, we found four different types of
sticking, two types of bouncing, and three types of fragmentation as possible
outcomes in collisions among protoplanetary dust aggregates. We distinguish
between eight combinations of porosity and mass ratio. For each of these cases,
we present a complete collision model for dust-aggregate masses between 10^-12
and 10^2 g and collision velocities in the range 10^-4 to 10^4 cm/s for
arbitrary porosities. This model comprises the collisional outcome, the
mass(es) of the resulting aggregate(s) and their porosities. We present the
first complete collision model for protoplanetary dust. This collision model
can be used for the determination of the dust-growth rate in protoplanetary
disks.Comment: accepted by Astronomy and Astrophysic
Development and correlation: Viking Orbiter analytical dynamic model with modal test
The Viking Orbiter (VO) experience in the achievement of a mathematical model is described along with the following project activities: (1) the generation of the overall plan for load analysis, an analytical dynamic model, and development tests; (2) the performance of VO subsystem static and modal tests; and (3) the correlation of the VO system model analysis and test. Success is attributed to the coordination of analysis and test using substructure modal coupling techniques
Anatomical variation of habitat related changes in scapular morphology
The mammalian forelimb is adapted to different functions including postural, locomotor, feeding, exploratory, grooming and defense. Comparative studies on morphology of the mammalian scapula have been performed in an attempt to establish the functional differences in the use of the forelimb. In this study, a total of 102 scapulae collected from 66 species of animals, representatives of all major taxa from rodents, sirenians, marsupials, pilosa, cetaceans, carnivores, ungulates, primates and apes were analyzed. Parameters measured included scapular length, width, position, thickness, area, angles and index. Structures included supraspinous and infraspinous fossae, scapular spine, glenoid cavity, acromium and coracoid processes. Images were taken using computed tomographic (CT) scanning technology (CT-Aquarium, Toshiba and micro CT- LaTheta, Hotachi, Japan) and measurement values acquired and processed using Avizo computer software and CanvasTM 11 ACD systems. Statistical analysis was performed using Microsoft Excel 2013. Results obtained showed that there were similar morphological characteristics of scapula in mammals with arboreal locomotion and living in forest and mountainous areas but differed from those with leaping and terrestrial locomotion living in open habitat or savannah. The cause for the statistical grouping of the animals signifies presence of the close relationship between habitat and scapular morphology and in a way that corresponds to type of locomotion and speed. The morphological characteristics of the scapula and functional interpretation of the parameters in relation to habitat of each taxon is discussed in detail.
Keywords: Mammalian, Scapula, Morphology, CT analysi
Derivation of the Quantum Probability Rule without the Frequency Operator
We present an alternative frequencists' proof of the quantum probability rule
which does not make use of the frequency operator, with expectation that this
can circumvent the recent criticism against the previous proofs which use it.
We also argue that avoiding the frequency operator is not only for technical
merits for doing so but is closely related to what quantum mechanics is all
about from the viewpoint of many-world interpretation.Comment: 12 page
On Phase Transition of -Type Crystals by Cluster Variation Method
The Cluster Variation Method (CVM) is applied to the Ishibashi model for
ammonium dihydrogen phosphate () of a typical hydrogen
bonded anti-ferroelectric crystal. The staggered and the uniform susceptibility
without hysteresis are calculated at equilibrium. On the other hand, by making
use of the natural iteration method (NIM) for the CVM, hysteresis phenomena of
uniform susceptibility versus temperature observed in experiments is well
explained on the basis of local minimum in Landau type variational free energy.
The polarization curves against the uniform field is also calculated.Comment: 14 pages, 10 figure
- …