33 research outputs found

    Green Synthesis of High Temperature Stable Anatase Titanium Dioxide Nanoparticles Using Gum Kondagogu: Characterization and Solar Driven Photocatalytic Degradation of Organic Dye

    Get PDF
    The present study reports a green and sustainable method for the synthesis of titanium dioxide (TiO2) nanoparticles (NPs) from titanium oxysulfate solution using Kondagogu gum (Cochlospermum gossypium), a carbohydrate polymer, as the NPs formation agent. The synthesized TiO2 NPs were categorized by techniques such as X-Ray Diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy analysis, Raman spectroscopy, scanning electron microscope- Energy-dispersive X-ray spectroscopy (SEM-EDX), Transmission electron microscopy (TEM), High-resolution transmission electron microscopy (HR-TEM), UV-visible spectroscopy, Brunauer-Emmett-Teller (BET) surface area and particle size analysis. Additionally, the photocatalytic actions of TiO2 NPs were assessed with regard to their ability to degrade an organic dye (methylene blue) from aqueous solution in the presence of solar light. Various parameters affecting the photocatalytic activity of the TiO2 NPs were examined, including catalyst loading, reaction time, pH value and calcination temperature of the aforementioned particles. This green synthesis method involving TiO2 NPs explores the advantages of inexpensive and non-toxic precursors, the TiO2 NPs themselves exhibiting excellent photocatalytic activity against dye molecules

    Assembly of the Inner Perivitelline Layer, a Homo log of the Mammalian Zona Pellucida: An Immunohistochemical and Ultrastructural Study

    Get PDF
    The avian inner perivitelline layer (IPVL), a homologous structure to the mammalian zona pellucida, is deposited between the granulosa cells and the oocyte cell membrane during folliculogenesis. The glycoprotein meshwork of the IPVL forms a 3-dimensional matrix and possesses important functions in the fertilization process: it contributes to the binding of avian spermatozoa to the oocyte and induces acrosomal exocytosis. In contrast to the zona pellucida of mammals, the IPVL does not prevent the physiological polyspermy found in birds. Previous studies have shown that in the Japanese quail (Cotumix japonica) at least 5 glycoproteins are constituents of the IPVL (ZP1, ZP2, ZP3, ZP4, and ZPD). In this study, we investigated the spatiotennporal assembly pattern of the IPVL during folliculogenesis using immunohistochemical and ultrastructural methods. The obtained results clearly show that these glycoproteins are incorporated into the IPVL at distinct points during follicular development, supporting the hypothesis that ZP2 and ZP4 form a type of prematrix into which ZP1, ZP3, and ZPD are integrated at a later stage of development. Copyright (C) 2011 S. Karger AG, Base

    Laser spectroscopy for breath analysis : towards clinical implementation

    Get PDF
    Detection and analysis of volatile compounds in exhaled breath represents an attractive tool for monitoring the metabolic status of a patient and disease diagnosis, since it is non-invasive and fast. Numerous studies have already demonstrated the benefit of breath analysis in clinical settings/applications and encouraged multidisciplinary research to reveal new insights regarding the origins, pathways, and pathophysiological roles of breath components. Many breath analysis methods are currently available to help explore these directions, ranging from mass spectrometry to laser-based spectroscopy and sensor arrays. This review presents an update of the current status of optical methods, using near and mid-infrared sources, for clinical breath gas analysis over the last decade and describes recent technological developments and their applications. The review includes: tunable diode laser absorption spectroscopy, cavity ring-down spectroscopy, integrated cavity output spectroscopy, cavity-enhanced absorption spectroscopy, photoacoustic spectroscopy, quartz-enhanced photoacoustic spectroscopy, and optical frequency comb spectroscopy. A SWOT analysis (strengths, weaknesses, opportunities, and threats) is presented that describes the laser-based techniques within the clinical framework of breath research and their appealing features for clinical use.Peer reviewe

    Structure of hydrogenase maturation protein HypF with reaction intermediates shows two active sites

    Get PDF
    [NiFe]-hydrogenases are multimeric proteins. The large subunit contains the NiFe(CN) 2CO bimetallic active center and the small subunit contains Fe-S clusters. Biosynthesis and assembly of the NiFe(CN) 2CO active center requires six Hyp accessory proteins. The synthesis of the CN - ligands is catalyzed by the combined actions of HypF and HypE using carbamoylphosphate as a substrate. We report the structure of Escherichia coli HypF(92-750) lacking the N-terminal acylphosphatase domain. HypF(92-750) comprises the novel Zn-finger domain, the nucleotide-binding YrdC-like domain, and the Kae1-like universal domain, also binding a nucleotide and a Zn 2+ ion. The two nucleotide-binding sites are sequestered in an internal cavity, facing each other and separated by 3c14 . The YrdC-like domain converts carbamoyl moiety to a carbamoyl adenylate intermediate, which is channeled to the Kae1-like domain. Mutations within either nucleotide-binding site compromise hydrogenase maturation but do not affect the carbamoylphosphate phosphatase activity. \ua9 2011 Elsevier Ltd All rights reserved.Peer reviewed: YesNRC publication: Ye
    corecore