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SUMMARY

[NiFe]-hydrogenases are multimeric proteins.
The large subunit contains the NiFe(CN)2CO bime-
tallic active center and the small subunit contains
Fe-S clusters. Biosynthesis and assembly of the
NiFe(CN)2CO active center requires six Hyp acces-
sory proteins. The synthesis of the CN� ligands
is catalyzed by the combined actions of HypF
and HypE using carbamoylphosphate as a sub-
strate. We report the structure of Escherichia coli
HypF(92–750) lacking the N-terminal acylphospha-
tase domain. HypF(92–750) comprises the novel
Zn-finger domain, the nucleotide-binding YrdC-like
domain, and the Kae1-like universal domain, also
binding a nucleotide and a Zn2+ ion. The two nucleo-
tide-binding sites are sequestered in an internal
cavity, facing each other and separated by �14 Å.
The YrdC-like domain converts carbamoyl moiety
to a carbamoyl adenylate intermediate, which is
channeled to the Kae1-like domain. Mutations within
either nucleotide-binding site compromise hydroge-
nase maturation but do not affect the carbamoyl-
phosphate phosphatase activity.

INTRODUCTION

Hydrogenases are key enzymes involved in hydrogen metabo-

lism, catalyzing the reversible oxidation of molecular hydrogen

into protons and electrons. These enzymes are widely distrib-

uted in Bacteria and Archaea, and a few are also present in

lower Eukarya (Vignais and Billoud, 2007). Hydrogenases

consist of three phylogenetically distinct classes: [FeFe]-hydro-

genases, [NiFe]-hydrogenases, and [Fe]-hydrogenases (Thauer

et al., 2010). The model organism Escherichia coli synthesizes

three membrane-associated [NiFe]-hydrogenases (Hyd) during

anaerobic growth (Forzi and Sawers, 2007). Whereas Hyd-1

and Hyd-2 are hydrogen-oxidizing enzymes, Hyd-3 together

with the formate dehydrogenase H forms the hydrogen-evolving

formate hydrogenlyase complex.

Structural studies on the [NiFe]-hydrogenases and [FeFe]-

hydrogenases showed that they display significant similarities
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in their structural framework and chemistry, despite the absence

of any resemblance between the folds surrounding them (Peters

et al., 1998; Volbeda et al., 1995). They comprise multisubunit

complexes inwhich the large subunit contains the reaction center

involving Ni and/or Fe ions, whereas the small subunit harbors

the Fe-S clusters that participate in an electron relay from the

active site to the redox partner (Vignais and Billoud, 2007).

The active sites of both [NiFe]-hydrogenases and [FeFe]-

hydrogenases have carbon monoxide and cyanide ligands coor-

dinated to the iron atoms. Despite this instance of convergent

evolution, apparently quite distinct metabolic intermediates,

enzyme mechanisms, and sets of proteins are employed to

synthesize and insert these diatomic ligands into the different

hydrogenases (Böck et al., 2006; Mulder et al., 2010). Although

considerable progress has been achieved in identifying key

steps in the biosynthesis of both sets of active sites, a number

of important questions, such as how the specific metal is

inserted into the target protein, how correct folding of the

precursor of the enzyme for the insertion process is maintained,

what governs synthesis of the toxic CN� and CO ligands, and

how the conformational change to achieve the functional metal

center is accomplished, remain to be resolved.

Six proteins, conserved in all microorganisms that synthesize

[NiFe]-hydrogenases, have been shown to participate in the

process of hydrogenase maturation: HypA, HypB, HypC,

HypD, HypE, and HypF. HypA and HypB were shown to be

involved in Ni insertion (Blokesch et al., 2004a; Mehta et al.,

2003), and this process occurs subsequent to insertion of the

iron center (Böck et al., 2006). HypE, HypF, HypC, and HypD

participate in synthesis and insertion of the Fe(CN)2CO center.

HypE and HypF are specifically involved in the synthesis of the

CN� ligands. HypF has a carbamoyltransferase activity, and it

has been proposed (Reissmann et al., 2003) that carbamoyl-

AMP, derived from carbamoylphosphate and ATP, acts as an

intermediate in the transfer of the carbamoyl moiety to the

C-terminal cysteinyl residue of HypE. HypE then catalyzes the

ATP-dependent dehydration of the thiocarboxamide to produce

a thiocyanate (Blokesch et al., 2004b; Reissmann et al., 2003).

The subsequent transfer of the cyano group to the iron to form

themetal center is thought to occur on the HypC-HypD complex,

but the mechanism requires further elucidation (Böck et al.,

2006; Forzi and Sawers, 2007). Nothing is known about how

the CO group is generated or introduced onto the iron atom for

[NiFe]-hydrogenases.
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Figure 1. Ribbon Representation of E. coli HypF(92–750)

The Zn-finger domain is colored red, the middle domain is colored blue, and

the C-terminal domain is colored green. Zn atoms are colored magenta.

Figure 2. Two Zn Fingers Shown in Cartoon Representation

(A) Anomalous map calculated with the data collected at the Zn absorption

edge peak shown at the 10s level. The map calculated from data collected at

the Fe absorption edge shows only a 3s peak at one of the metal positions.

(B) Superposition of the two Zn fingers. Coordinating cysteine residues are

shown in stick representation.
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Crystal Structure of HypF Protein
HypF has an N-terminal acylphosphatase domain (amino

acids 1–91), and in the absence of any other substrate HypF

dephosphorylates carbamoylphosphate (Paschos et al., 2002).

Adjacent to the acylphosphatase domain are two signature

zinc-finger motifs (residues 109–184), and toward the C terminus

of the protein (residues 473–479) there is a motif characteristic of

carbamoyltransferases (Paschos et al., 2002). HypF also cata-

lyzes the carbamoylphosphate-dependent hydrolysis of ATP to

AMP and pyrophosphate, and it is unclear whether a carba-

moyl-adenylate or carbamoyl-ADP intermediate is involved in

the transfer to HypE (Blokesch et al., 2004b; Reissmann et al.,

2003).

Structural information for HypC, HypD, and HypE proteins

from different organisms has been obtained (Gasper et al.,

2006; Rangarajan et al., 2008; Shomura et al., 2007; Wang

et al., 2007; Watanabe et al., 2007, 2009; Xia et al., 2009).

However, although the structure of the N-terminal acylphospha-

tase domain of HypF has been determined (Rosano et al., 2002),

no other structural information for the HypF protein is available.

In this work, we present the crystal structure of the carbamoyl-

transferase HypF, which reveals a novel Zn-finger motif, and

the presence of two nucleotide-binding domains with ancient

folds. The structure combined with mutagenesis and activity

measurements enabled us to provide new mechanistic insight

into the catalytic function of the enzyme.

RESULTS

Structural Characterization of E. coli HypF(92–750)
Efforts to crystallize the full-length HypF protein have yielded no

crystals so far. However, the construct containing residues

92–750, in which the N-terminal acylphosphatase domain with

already known structure (Rosano et al., 2002) was deleted, could

be crystallized. The initial crystals diffracted to low resolution.

Mutation to alanines of three consecutive glutamines, predicted

to be surface exposed, to reduce surface entropy (Cooper et al.,

2007) resulted in a protein variant HypF(92–750)M3 that led to

crystals diffracting to 2.0 Å resolution, albeit crystallized under

different conditions.
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The HypF(92–750) protein is composed of three domains en-

compassing residues 101–187, 188–378, and 379–746 (Figure 1).

The Zn-Finger Domain

The first domain contains four CXXCmotifs andwas predicted to

be a Zn-finger domain (Paschos et al., 2002). It can be further

divided into two subdomains, 101–141 and 142–187, each

carrying two CXXC motifs. Each subdomain contains a hairpin

helix-loop-extended strand followed by a loop. The first CXXC

motif is located at the beginning of the helix and the second

is in the loop that follows the extended section (Figure 2A).

These four cysteines are the ligands for a metal ion clearly visible

in the electron density map. The Zn-finger structural elements

encompass residues 107–136 and 157–186. The first metal

is bound by Cys109, Cys112, Cys131, and Cys134, whereas

the second metal binds to Cys159, Cys162, Cys181, and

Cys184. These two Zn fingers share 12 identical residues, corre-

sponding to 40% sequence identity. Not surprisingly, they

superimpose with a low root-mean-square deviation (rmsd) of
All rights reserved
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0.85 Å (Figure 2B). The two Zn fingers pack side by side in an

antiparallel fashion, contacting through their extended strands.

The Middle Domain

The middle domain (residues 188–378) contains an extended

mixed 11-stranded b sheet flanked by three a helices on one

side and two a helices on the other side. The b sheet is highly

curved, with a helical twist of 180� between the first and last

strands (Figure 1). The molecular surface of this domain contains

a deep and long depression located over the tips of strands

b8-b5-b7-b6-b10. This region is lined with arginines, lysines,

and a histidine and has a highly positive character. This depres-

sion faces the C-terminal domain and is part of a large cavity in

the HypF structure.

The C-Terminal Domain

The C-terminal domain (residues 379–746) is folded into a cres-

cent-shaped a/b-layered structure with five successive

a-b-a-b-a layers. The first and second a-helical layers each

contains two a helices, whereas the last a-helical layer contains

a bundle of seven helices. Both b sheets are mixed, with six and

five b strands, respectively (Figure 1). The concave side of this

domain faces the middle domain and is opposite the positively

charged depression in its surface and completes the internal

cavity. A large peak in the electron density map was found on

the concave side of this domain, octahedrally coordinated by

Asp502, Asp727, His475, His479, and two water molecules

(Figure 3A).

Substrate- and Metal-Binding Sites
Metal-Binding Sites

In addition to the three metal ions described above (two in the

Zn-finger domain and one in the C-terminal domain), a fourth

metal was identified between two symmetry-related molecules

and coordinated by two backbone carbonyl oxygen atoms,

a glutamine side chain, and three water molecules. Because

HypF is suspected of potentially binding iron, it was essential

to determine the identity of these bound metal ions. Therefore,

two data sets were collected from the same crystal, one at the

Zn absorption peak wavelength (1.28248 Å) and the other at

the Fe peak absorption wavelength (1.73989 Å). The anomalous

electron density map was calculated for each data set. The map

from the Zn-peak wavelength data showed peaks at the metal

positions within the Zn-finger domain with heights of 35s and

25s, and in the C-terminal domain a peak of 13.7s. In the

Fe-peak map, the peaks at the metal sites in the Zn-finger

domain were lower than 4s, and in the C-terminal domain the

peak height was 4.7s. Because the f0 and f00 for another possible
ion, Mn2+, are similar to those for Fe2+ at these wavelengths

whereas these values for Mg2+ are even smaller, we conclude

that the three sites are occupied by Zn2+ and no Fe is present

in these crystals. No significant peak in either anomalous map

was found at the location of the intermolecular ion and, based

on the ligand-ion distances of �2.3–2.4 Å and the presence of

Mg2+ during crystallization, we conclude that this is indeed an

Mg2+ ion (Harding, 2006). These four metal ions were present

in all determined crystal structures of HypF with reasonable

temperature factors.

Nucleotide-Binding Sites

Themap calculated with the data collected from crystals soaked

with the ATP analog AMP-PNP showed electron density corre-
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sponding to a triphosphate nucleotide located in the depression

within the middle domain (site 1). Electron density for the entire

nucleotide is well defined (Figure 3B). The nucleotide molecule

is bound with the adenine in an anti conformation and the

triphosphate following an S-shaped curve (Figure 3B). The phos-

phates occupy the most positively charged part of the depres-

sion, with the a-phosphate being the most buried. The adenine

is located in a mildly hydrophobic environment, sandwiched

between the side chain of Leu277 and Pro249, with its N6

atom forming a weak hydrogen bond to the carbonyl OGlu296

and the O3 hydroxyl to NH1Arg372. The a-phosphate is most

tightly bound, with its oxygen atoms hydrogen bonded to NH1

and NH2 of Arg245, NH1 of Arg372, and NH of Ser322. The

b- and g-phosphates form one hydrogen bond each to NH1Arg372

and NZLys243, respectively (Figure 3B). Thus, Arg372 forms

three hydrogen bonds to ATP, Arg245 forms two, and Lys243

forms one. Examination of the molecular surface of the middle

domain shows the presence of a tunnel that begins under the

a-phosphate and emerges on the other side of this domain

covered by the edge of the first Zn finger. The tunnel is wider

near the a-phosphate and becomes quite narrow in the middle

(Figure 3C).

Unexpectedly, in the crystal soaked with AMP-PNP, we

observed an additional large blob of electron density located

on the concave surface of the C-terminal domain near the

Zn2+ ion within the interfacial cavity (site 2). The shape of this

density corresponded very well to a molecule of ADP (Fig-

ure 3D). We presume that ADP was derived from the break-

down of AMP-PNP, which happens at low pH (Sigma-Aldrich

product information sheet). Indeed, when the HypF(92–750)

crystal was soaked independently with ADP, we observed elec-

tron density corresponding to an ADP molecule at the same

place within the C-terminal domain. Interestingly, no ADP was

bound in site 1 in the middle domain. The ADP molecule in

site 2 is located on top of the large b sheet of the C-terminal

domain and extends in an approximately perpendicular direc-

tion to the sheet. ADP is firmly bound through the participation

of the Zn2 ion (Figure 3D). One oxygen from the a- and one from

the b-phosphate coordinate the Zn2+ ion, replacing two waters

that liganded the metal in the native structure. In addition, the

b-phosphate forms two hydrogen bonds to the NH and

carbonyl groups of Ile504, whereas the a-phosphate is

hydrogen bonded to NHAsp727, NZLys402, and NHGly697 (Fig-

ure 3D). The adenine also forms several hydrogen bonds:

between the N6 atom and OE1Glu623, the N1 atom and

ND2Asn701, and the O2 atom and NH1Arg596.

In order to see whether carbamoylphosphate (CP) binds to

HypF(92–750), we soaked the crystals with CP and/or ATP or

its derivatives. No CP was visible when only CP was soaked

into the crystal. When CP and ATP were soaked simultaneously,

we observed electron density in site 1. The density fitted AMP

and extended somewhat beyond the phosphate group. The

carbamoyl adenylate (CBA) fitted well, whereas the b-phosphate

of ADP was less compatible with the density. The carbamoyl

adenylate is an anticipated intermediate in the transfer reaction,

and our structure supports the proposed chemistry (Reissmann

et al., 2003). The carbamoyl adenylate group is located in site 1

(Figure 3E) and makes the following contacts with the HypF

molecule: N6CBA with OGlu296 2.8 Å; O3*CBA with NH2Arg372
83, December 7, 2011 ª2011 Elsevier Ltd All rights reserved 1775



Figure 3. Nucleotide- and Metal-Binding Sites

(A) Coordination of the Zn atom located at the C-terminal domain of HypF. The coordinating residues are shown in stick representation.

(B) AMP-PNPmolecule bound at the nucleotide-binding site at the middle domain. Coordinating residues are shown in stick representation. The 2mFobs� DFcalc
electron density for the AMP-PNP molecule is shown contoured at 1.5s.

(C) A tunnel traversing the middle domain and located near the nucleotide-binding site.

(D) An ADP molecule bound at the C-terminal domain near the Zn ion. The ADP molecule and the coordination residues are shown in stick representation. The

2mFobs � DFcalc electron density for the ADP molecule contoured at 1.5s is shown. The Zn2+ ion is colored magenta.

(E) The carbamoyl adenylate molecule bound at the nucleotide-binding site at the middle domain. The coordinating residues are shown in stick representation.

The 2mFobs � DFcalc electron density for the carbamoyl adenylate molecule is shown contoured at 1.5s.
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2.8 Å; O2ACBA with NH1Arg372 and NH2Arg372 3.1 and 3.0 Å,

respectively; and O1BCBA with NH2Arg372 3.3 Å.

Thermodynamics of Nucleotides Binding to HypF
We attempted isothermal titration calorimetry (ITC) experiments

with full-length HypF. Unfortunately, due to the tendency of HypF

to aggregate, the thermodynamic experiments proved to be

impossible. Therefore, the ITC measurements were carried out
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with the fragment used for crystallization by adding a solution

of AMP-PNP, ADP, or carbamoylphosphate to a solution of the

HypF(92–750) apoprotein: the occurrence of a binding event

was revealed by the presence of exothermic peaks following

each addition (Figure 4). Fits of the integrated heat data, carried

out using amodel involving a single binding event, yielded a Kd of

�6 mM for AMP-PNP and�4 mM for ADP, and a stoichiometry of

1.2 equivalents of AMP-PNP and 1.02 of ADP per HypF
All rights reserved



Figure 4. ITC Traces with the Respective Integrated and Normalized Isotherms for HypF(92–750) Titrated with ADP and AMP-PNP
For ADP (left): one-site model, c2/df = 1,416, N = 1.02 ± 0.01 sites, K = 2.40*105 ± 2.01*104 M�1, DH = �3,952 ± 61.38 cal/mol, DS = 11.1 cal/mol/�. For the
AMP-PNP (right): one-site model, c2/df = 6,191, N = 1.21 ± 0.04 sites, K = 1.53*105 ± 3.18*104 M�1, DH = �3,601 ± 164.0 cal/mol, DS = 11.4 cal/mol/�.
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monomer. This process is driven by a large, favorable enthalpic

factor (DH �3.60 cal mol�1 ± 0.16 kcal mol�1 in AMP-PNP and

DH �3.95 cal mol�1 ± 0.06 kcal mol�1 in the case of ADP) that

compensates the positive entropic values (DS 11.4 cal mol�1 K�1

andDS 11.1 cal mol�1 K�1). No heats were observed during titra-

tion with 2 mM carbamoylphosphate.

Mutational Analysis of the Nucleotide-Binding Sites
To determine whether both nucleotide-binding sites identified in

the HypF structure are functionally important, we designed

amino acid substitutions within nucleotide-binding sites 1 and

2 that introduced either steric hindrance or removed the key

interactions and should render the site unavailable for nucleotide

binding. Within site 1 (ATP-binding) in the middle domain, we

mutated Gly298 to Met. A second double mutant of site 1,

Lys243Gln/Arg245Gln, was also generated. Within site 2 (ADP-

binding), Gly679 was replaced either by Ala or Val. In the third

mutant, both His475 and His479 in site 2 were exchanged for

Gln residues. The overall effect of the amino acid alterations on

the ability of each of the HypF variants tomature all three hydrog-

enases was examined by determining the total hydrogenase

enzyme activity in crude extracts of the E. coli hypF deletion

mutant DHP-F2 (Paschos et al., 2002) transformedwith plasmids

encoding each of the five HypF variants; DHP-F2 is devoid of

[NiFe]-hydrogenase activity.

The effect of mutation of site 1 was examined with pFG298M

or pFK243Q/R245Q (Table 1). Whereas extracts derived from

DHP-F2 transformed with pJW731 encoding wild-type, nonmu-

tated HypF had a hydrogenase enzyme activity of 2.2 U/mg of

protein, extracts from DHP-F2 transformed with pFG298M
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or pFK243Q/R245Q were essentially devoid of hydrogenase

activity.

The activities of both hydrogen-oxidizing hydrogenases Hyd-1

and Hyd-2 can be visualized directly after nondenaturing

PAGE by staining specifically for hydrogenase enzyme activity

(Ballantine and Boxer, 1985). Crude extracts derived from the

E. coli wild-type strain MC4100 revealed distinct activity bands

that correlated with Hyd-1 and Hyd-2 (Figure 5). In contrast,

the hypF deletion mutant DHP-F2 lacked Hyd-1 and Hyd-2

activity bands, consistent with both enzymes being inactive.

Transformation of pJW731 encoding native HypF into strain

DHP-F2 restored the hydrogenase activity band pattern ob-

served with MC4100. On the other hand, plasmids pFG298M

and pFK243Q/R245Q, when transformed into DHP-F2, failed

to restore the Hyd-1 and Hyd-2 activity bands.

The activity of Hyd-3 can also be determined in the direction of

proton reduction (dihydrogen evolution) in whole cells by

measuring the activity of the formate hydrogenlyase complex

using formate as an electron donor (Pinske and Sawers, 2010).

Whereas plasmid pJW731 restored wild-type hydrogen evolu-

tion activity to DHP-F2, neither strain DHP-F2/pFG298M nor

DHP-F2/pFK243Q/R245Q produced hydrogen (Table 1).

Taken together, these results indicate that the activities of

Hyd-1, Hyd-2, and Hyd-3 could not be restored by plasmids

encoding either HypF variant G298M or HypF variant

K243Q/R245Q, strongly suggesting that the amino acid substi-

tutions in nucleotide-binding site 1 abolished HypF maturase

activity.

To ensure that the G298M and K243Q/R245Q amino acid

substitutions introduced into HypF did not cause destabilization
83, December 7, 2011 ª2011 Elsevier Ltd All rights reserved 1777



Table 1. Effects of Amino Acid Substitutions in the ATP-Binding

Sites of HypF on Hydrogen Metabolism

Strain

Relative

Hydrogenase

Activitya (U/mg)

Relative Formate

Hydrogenlyase

Activityb (U/mg)

DHP-F2/pJW731 100 100

DHP-F2 (DhypF) 0.0646 ± 0.0639 <0.01

DHP-F2/pFG697A 16.23 ± 6.53 23.15 ± 0.8

DHP-F2/pFG697V 9.99 ± 2.63 15.9 ± 0.5

DHP-F2/pFG298M 0.045 ± 0.043 <0.01

DHP-F2/pFH475A/H479A 0.0665 ± 0.0345 <0.01

DHP-F2/pFK243Q/R245Q 0.0407 ± 0.0353 <0.01
a Total hydrogenase activity was measured as hydrogen-dependent

reduction of BV. One hundred percent activity corresponds to a specific

activity of 2.87 ± 0.785 mmol H2 oxidized min�1 mg protein�1.
b Hydrogen evolution activities weremeasure in whole cells. One hundred

percent activity corresponds to a specific activity of 13.6 nmol H2 evolu-

tion min�1 mg protein�1.

Figure 6. Analysis of the Carbamoylphosphate Phosphatase Activity

of Partially Purified HypF ATP-Binding Site Mutants

Equivalent aliquots of enriched HypF variants purified from crude extracts of

DHP-F2 (DhypF) transformedwith the plasmids were separated by SDS-PAGE

(10% [w/v] polyacrylamide).

(A) LaneM,molecular massmarkers indicated in kDa; lane 1, DHP-F2/pJW731

encoding full-length HypF; lane 2, DHP-F2 (DhypF); lane 3, DHP-F2/pFG697A;

lane 4, DHP-F2/pFG697V; lane 5, DHP-F2/pFG298M; lane 6, DHP-F2/

pFH475A/H479A; lane 7, DHP-F2/pFK243Q/R245Q. The gel was stained with

Coomassie brilliant blue.

(B) A nondenaturing polyacrylamide gel (7% [w/v] polyacrylamide) in which

purified HypF variants were separated and the gel was subsequently stained

for CP phosphatase activity as described in Experimental Procedures. The

lanes are numbered exactly as for (A).
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of the enzyme, the HypF protein in extracts of DHP-F2/pJW731,

DHP-F2/pFG298M, and DHP-F2/pFK243Q/R245Q was en-

riched and analyzed by SDS-PAGE (Figure 5). A similar amount

of HypF was present in all three extracts.

Nucleotide-binding site 2 in the C-terminal domain of HypF

(amino acids 379–746) was probed with three mutants,

Gly697Ala, Gly697Val, and His475Gln/His479Gln. Whereas the

double-His substitution resulted in a strain unable to synthesize

active hydrogenase, the substitutions at Gly697 reduced

hydrogenase activity by 85%–90% compared with wild-type

HypF (Table 1). Analysis of the level of HypF variants as deter-

mined by SDS-PAGE revealed that single-amino acid substitu-

tion did not affect HypF stability. In contrast, the double-His

substitution variant of HypF could not be detected in extracts

of DHP-F2/pFH475Q/H479Q (Figure 6A). Measurement of
Figure 5. In-Gel Stain for Hydrogenase Enzyme Activity

Proteins in cell extracts (34 mg of protein) derived from DHP-F2 (DhypF)

transformed with plasmids encoding HypF variants were separated by non-

denaturing gel electrophoresis (7% [w/v] polyacrylamide) and subsequently

stained for hydrogenase activity. The stained bands corresponding to Hyd-1

and Hyd-2 are indicated. Lane 1, DHP-F2 (DhypF); lane 2, DHP-F2/pFG697A;

lane 3, DHP-F2/pFG697V; lane 4; DHP-F2/pFG298M; lane 5, DHP-F2/

pFH475A/H479A; lane 6, DHP-F2/pFK243Q/R245Q; lane 7, DHP-F2/pJW731;

lane 8, crude extract from MC4100 (wild-type). The weak activity band that

migrates at the top of the gel and which is labeled with an asterisk results from

a hydrogenase-independent side activity of formate deydrogenase and is not

related to the hydrogenases. Nevertheless, it provides a useful loading control.

1778 Structure 19, 1773–1783, December 7, 2011 ª2011 Elsevier Ltd
hydrogen evolution in whole cells showed that the Ala-

substituted variant of HypF restored 25% of the activity to the

DhypF mutant, whereas the valine-substituted variant restored

approximately 15% of the wild-type hydrogen production

activity.

In order to determine whether Hyd-1 or Hyd-2 contributed to

the total hydrogenase activity measured for the G697 variants

of HypF, extracts derived from both strains were analyzed after

native PAGE and activity staining (Figure 5). Both plasmids

restored weak Hyd-2 activity bands, but essentially no active

Hyd-1 enzyme was observed.

Taken together, these data suggest that site 2 is also important

for maximal maturation activity of HypF.

Carbamoylphosphate Phosphatase Activity
and Hydrogenase Maturation
Previous studies have shown that amino acid substitutions

introduced into the acylphosphatase, zinc-finger, or O-carba-

moyltransferase (site 2) motifs can lead to abrogation of

carbamoylphosphate phosphatase activity as well as defective

hydrogenase maturation activity (Paschos et al., 2002). We

have shown that functional nucleotide-binding sites are essen-

tial for hydrogenase maturation, and we wanted to analyze
All rights reserved
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whether the same mutations also affected carbamoylphosphate

phosphatase activity. The enriched, full-length HypF variants

were electrophoretically separated on native PAGE and stained

for carbamoylphosphate phosphatase enzyme activity as

described in Experimental Procedures. All variants that pro-

duced a stable HypF enzyme retained carbamoylphosphate

phosphatase activity (Figure 6B).

DISCUSSION

Structural Similarity to Other Proteins
Assembly of functional [NiFe]-hydrogenases requires a set of

accessory proteins that deliver the components of the prosthetic

groups. These accessory proteins have beenwidely investigated

functionally and structurally (Böck et al., 2006). HypF is the only

remaining protein from the [NiFe]-hydrogenase maturation

pathway for which no structure was known. We report here the

structure of HypF(92–750), which lacks the N-terminal (1–91)

acylphosphatase domain. The structure of this small domain

was reported previously (Rosano et al., 2002). This domain is

linked to the rest of HypF by a flexible linker, thwarting our

attempts to crystallize the entire HypF. Moreover, although our

construct starts with residue Gln92, the first nine residues are

disordered in our structure.

In addition to the N-terminal acylphosphatase domain,

the structure of HypF(92–750) reveals that this protein has three

additional domains. The first of these is a Zn-finger domain

comprising two almost identical Zn fingers, with the Zn2+ ions

being coordinated by four Cys residues. This domain is essential

for HypF function in hydrogenase maturation, shown by a lack of

hydrogenase activity in cells expressing HypF cysteine mutants

(Paschos et al., 2002). The HypF Zn fingers represent a new

topology for a Zn2+-binding domain, as indicated by our search

through the Protein Data Bank (PDB) using the Dali server

(Holm et al., 2008), which found no structural homologs. The

sequences corresponding to these Zn fingers are highly con-

served among all known HypF proteins from different species.

The middle domain of HypF shows structural similarity to the

YrdC-like proteins, widely distributed in all three domains of

life. These domains are found either singly or in conjunction

with other domains. The HypF middle domain (amino acids

188–378) overlaps with E. coli YrdC (PDB ID code 1HRU;

Teplova et al., 2000), Sulfolobus tokodaii Sua5 (PDB ID code

2EQA; Agari et al., 2008), and E. coli YciO (PDB ID code 1KK9;

Jia et al., 2002) with an rmsd of �1.5–1.6 Å over 120–140

residues. The positively charged depression, which in HypF

contains ATP, is conserved in other YrdC-like proteins. Indeed,

a nucleotide molecule binds in the same place within the struc-

ture of S. tokodaii Sua5 (Agari et al., 2008). The function of

YrdC-like proteins appears to be associated with RNAmodifica-

tions. Crystallographic and nucleic acid-binding studies of E. coli

YrdC suggested that this protein might exert its function through

binding a double-stranded RNA (Kaczanowska and Rydén-

Aulin, 2005; Teplova et al., 2000), and the yeast YrdC-like protein

was recently shown to be essential for translational regulation

in yeasts through tRNA modification (El Yacoubi et al., 2009;

Lin et al., 2010). The residues flanking the nucleotide-binding

site in HypF, and which are conserved in the YrdC-like proteins,

include Lys243, Arg245, Thr321 (mostly), Ser322, and Asn324.
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These residues contact the phosphates and ribose of ATP, as

well as Val/Leu101, Ala/Ile251, Leu/Phe294, and Val/Ile363,

which contact the adenine base. This residue pattern is not

conserved in YciO, which may bind different ligands in this

deep pocket.

The C-terminal domain of HypF also has structural homologs

in the so-called universal proteins Kae1, present and essential

in the three domains of life (Galperin and Koonin, 2004). The

closest structural homologs are Kae1 from Pyrococcus abyssi

(PDB ID codes 2IVN and 2IVP; Hecker et al., 2007), Kae1 from

Methanocaldococcus jannaschii (PDB ID code 2VWB; Hecker

et al., 2008), and the Kae1 component of the KEOPS complex

from Thermoplasma acidophilum (PDB ID code 3ENO; Mao

et al., 2008). They superimpose on HypF with an rmsd of �1.6–

1.7 Å for�160 Ca atoms. These proteins were initially annotated

as endopeptidases (Abdullah et al., 1992), but their actual func-

tion has been questioned (Galperin and Koonin, 2004). Kae1

from P. abyssi (PDB ID code 2IVP) was shown to be an iron-

protein that binds ATP and both single- and double-stranded

DNA (Hecker et al., 2007). The ATP in Kae1 binds in the same

place as ADP in the C-terminal domain of HypF. Of the four

residues that coordinate Zn2+ in HypF, His475, His479, and

Asp727 are conserved in Kae1 whereas the fourth residue

(Asp502) is replaced by a Tyr residue (Hecker et al., 2007). In

archaeal M. jannaschii Kae1, a metal ion assigned as Mg2+

occupies a similar position as the Zn and the Fe atoms in other

homologs.

Mechanistic Implications
The two nucleotide-binding sites are located at opposite sides of

a large cavity at the interface between the middle and C-terminal

domains and are separated by only �14 Å. It appears that only

site 1 (YrdC-like middle domain) can accommodate ATP,

whereas site 2 (Kae1-like C-terminal domain) can receive only

AMP or, at most, ADP. This arrangement suggests a channeling

of a reaction intermediate from site 1 to site 2. Our observation of

a carbamoyl adenylate intermediate in site 1 upon soaking the

HypF(92–750) crystal with ATP and carbamoylphosphate argues

that this reaction step occurs at site 1 and that the N-terminal

(1–91) phosphatase domain is not required for this reaction.

We hypothesize that the carbamoyl adenylate migrates subse-

quently to site 2 (C-terminal domain) before delivery of the carba-

moyl group to HypE (Reissmann et al., 2003). According to the

previous proposal (Paschos et al., 2002), formation of the carba-

moyl adenylate is associated with a release of PPi and Pi. The

presence of a tunnel under the ATP a-phosphate in site 1

suggests that this is the binding site for the carbamoylphosphate

or carbamate substrate and would indicate an ordered reaction

with this substrate binding first, followed by ATP binding. Inter-

estingly, our experiments with the full-length mutants that

affected ATP/ADP binding in sites 1 or 2 showed that the carba-

moylphosphate phosphatase activity was retained in the

absence of the nucleotide. This is probably possible because

carbamoylphosphate hydrolyzes readily, and it just needs to

be ‘‘trapped’’ in the reaction chamber and it will eventually

hydrolyze. Having an ATP molecule there leads to the formation

of the carbamoyl adenylate product. The addition of an acyl-

phosphatase module might make this much more efficient and

competitive, with the consequence that hydrogenasematuration
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can compete with arginine and pyrimidine biosynthesis for the

carbamoylphosphate substrate. This would also explain the

‘‘tunnel’’ emerging behind the carbamoyl adenylate-binding

site and is the possible structural function of the zinc-finger

motif. The formation of carbamoyl adenylate is essentially

merely a means of stabilizing the carbamate moiety until it

can react with the enzyme’s ‘‘true’’ substrate—the cysteinyl

residue of HypE. Notably, some bacteria, for example Ralstonia

eutropha H16, have a truncated version of HypF that includes

only the C-terminal domain (Wolf et al., 1998). Further copies

of full-length HypF (HypF2 and HypF3) known to be present in

these bacteria might, however, supply this truncated HypF1

derivative with the carbamoyl adenylate intermediate. Clearly,

the detailed chemical steps of the overall carbamoyl transfer

reaction are not yet clear, even with the knowledge of the crystal

structure.

The N-terminal acylphosphatase domain, missing in the

present structure, is connected to the rest of the protein by

a long and flexible linker. This linker, residues 92–100, is disor-

dered in the present structure. The length of this linker and its

flexibility, also reflected in our inability to crystallize the full-

length HypF, makes it difficult to predict the position of this

domain relative to the rest of the protein. The acylphosphatase

domain exhibits specificity for carbamoylphosphate (Paschos

et al., 2002) in vitro, and it is essential for hydrogenase matura-

tion activity of HypF in vivo.

EXPERIMENTAL PROCEDURES

Strains and Plasmid Construction

The strains used in this study were BL21(DE3) (F� ompT gal dcm lon

hsdSB(rB
� mB

�) l(DE3 lacI lacUV5-T7 gene 1 ind1 sam7 nin5)) (Studier and

Moffatt, 1986), MC4100 (F�, araD139, D(argF-lac)U169, ptsF25, deoC1,

relA1, flbB5301, rspL150, l�) (Casadaban and Cohen, 1979), and DHP-F2

(like MC4100 but DhypF amino acids 59–629) (Paschos et al., 2002).

The DNA sequences encoding full-length HypF (HypF-FL) and the HypF

(92–750) truncated variant were amplified from E. coli O157:H7 EDL933

genomic DNA. The genes on the amplified DNA fragments were cloned in-

frame in the vector pRL652 for expression of TEV-cleavable GST-tagged

protein.

Introduction of amino acid substitutions to improve crystallizability and

to modify the putative ATP-binding sites of HypF was performed by the

QuikChange mutagenesis procedure (Stratagene) as described by the

manufacturer and using a plasmid containing the 92–750 insert or full-length

entire HypF gene as a template DNA with the oligonucleotide primers listed

in Table S1 (available online). The resulting plasmids were named according

to the amino acid substitution or substitutions introduced into the encoded

HypF variant: pFG298M and pFK243Q/R245Q carry amino acid substitutions

in the middle domain of HypF; and pFH475A/H479A, pFG697A, and pFG697V

have substitutions in the C-terminal domain of HypF. Plasmid pZL364 carries

a gene encoding a HypF(92–750) variant with the triple-substitution Q571A/

Q572A/Q573A, referred to as HypFM3.

Expression of hypF and Purification of Recombinant Proteins

GST-HypF fusion protein variants were overproduced in E. coli BL21(DE3)

cells. Cells containing the plasmids encoding HypF-FL and HypF(92–750)

were grown aerobically at 37�C in 1 l of LBmedium containing 100 mg/ml ampi-

cillin to the mid-exponential phase, and protein overproduction was initiated

by adding isopropyl-b-D-galactopyranoside to a final concentration of

0.2 mM. The temperature was reduced to 20�C and incubation was continued

with shaking overnight. Cells were harvested by centrifugation (4,000 rpm,

30 min, 4�C), resuspended in a buffer consisting of 50 mM HEPES (pH 8.5)

and 400 mM NaCl, and lysed on ice by sonication using alternating cycles of

10 s on/off for a total of 3 min. Following sonication, protease inhibitors
1780 Structure 19, 1773–1783, December 7, 2011 ª2011 Elsevier Ltd
(0.5 mM benzamidine and 0.01 mM leupeptin) as well as RNase and DNase

(0.5 mg of each) were added to the lysate. The lysate was clarified by centrifu-

gation (15,000 rpm, 4�C, 60 min) and the supernatant was removed. All purifi-

cation steps were carried out aerobically. The protein was applied to a 2 ml

bed volume of GST beads (GEHealthcare) pre-equilibrated with the sonication

buffer. The mixture was incubated for 1 hr at room temperature, and

then packed into a column and washed using gravity flow with 20 column

volumes of the same buffer. The amount of protein retained on the beads

was assessed using the Bradford assay. The GST tag was cleaved on

the column by the addition of TEV protease (Kapust and Waugh, 2000) at

a protease:protein ratio of 1:50 and incubating overnight at room temperature.

The cleaved HypF protein was eluted from the column with the wash buffer,

which was identical to the resuspension buffer. A 500 ml aliquot of HypF was

then loaded onto a Superdex 200 column equilibrated with 20 mM HEPES

(pH 8.5) and 200 mM NaCl. HypF-FL eluted from this column showed a

dynamic equilibrium between dimers (apparent molecular mass of 190 kDa)

and monomers (90 kDa). HypF(92–750) eluted from this column as a monomer

with an apparent molecular mass of 70 kDa. Protein purity was assessed by

SDS-PAGE. All HypF proteins were concentrated to 6–8 mg/ml by ultrafiltra-

tion in a final buffer of 20 mM HEPES (pH 8.5) and 100 mM NaCl prior to

crystallization.

Crystallization

Initial crystallization trials with HypF(92–750) were performed by the sitting-

drop vapor-diffusion method in Intelli-Plates (Art Robbins) using 0.4 ml protein

and 0.4 ml reservoir solution and JCSG+, Classic I and II (QIAGEN) screens.

No crystals were obtained initially. To improve the chances of crystallization

by reducing surface entropy (Cooper et al., 2007), three consecutive glutamine

residues in the HypF(92–750) construct were mutated to alanines resulting

in a HypFM3 Q571A/Q572A/Q573A triple mutant. This protein led to crystals

grown from mother liquor containing 22% (w/v) polyacrylic acid 5100

sodium salt, 0.1MHEPES (pH 8.5), and 20mMMgCl2. Initial crystals appeared

as clusters of needles and were optimized to yield separate chunky bars

under the final crystallization condition: 26% (w/v) polyacrylic acid 5100

sodium salt, 0.1 M HEPES (pH 8.5), 20 mM MgCl2, 2.5% (w/v) isopropanol,

and 10% (w/v) ethylene glycol. The obtained crystals belong to the ortho-

rhombic space group P212121 with a = 46.3, b = 77.7, c = 199.9 Å, contain

one molecule in the asymmetric unit with Vm = 2.51 Å3/Da, and diffract to

2 Å resolution.

The SeMet-derivatized protein was prone to aggregation and did not crys-

tallize. Instead, the heavy-atom derivative approach was pursued. Crystals

of HypF were soaked in 10 mM IrCl3 for 3 hr, and the iridium derivative dif-

fracted to 3 Å resolution with only slightly different cell dimensions: a = 46.4,

b = 78.2, c = 200.7 Å. The substrate-binding site was probed by overnight

soaking of the HypF crystals with 5 mM carbamoylphosphate in combination

with 5 mM ATP, AMP-CPP, AMP-PNP, ADP, or AMP.

Data Collection and Structure Determination

Diffraction data were collected at the CMCF1 beamline at the Canadian Light

Source using a Mar300 CCD detector. Data integration and scaling were per-

formed with HKL2000 (Otwinowski and Minor, 1997). The diffraction limits,

crystal space group, and unit cell dimensions of the obtained crystals are pre-

sented in Table 2. The heavy-atom sites and the initial phases were obtained

by the multiple isomorphous replacement with anomalous scattering method,

with the native and two derivative data sets (Zn2+ and Ir3+) collected at their

respective absorption edges (1.28248 Å and 1.10498 Å) using the program

autoSharp (Vonrhein et al., 2007). The initial model was built using RESOLVE

software (Terwilliger, 2003) and finalized by application of alternating cycles

of refinement using REFMAC5 (Winn et al., 2003) and refitting using Coot

(Emsley and Cowtan, 2004). The final refinement cycles including the TLS

parameters with HypFM3 divided into three groups. Data collection and refine-

ment statistics are summarized in Table 2. In the structure of the HypFM3-

AMP-PNP complex, one molecule of HypF is less well ordered for residues

118–124, 144–182, and 335–344, which likely leads to somewhat higher R

factors.

The final model consists of residues 101–746. The nine N-terminal and six

C-terminal residues are disordered and could not be reliably modeled. Coor-

dinates and structure factors for apo-HypFM3, HypFM3-carbamoyl adenylate,
All rights reserved



Table 2. Data Collection and Refinement Statistics

Native Ir Peak Zn Peak

ATP+CP

Fe Peak

ATP+CP

Zn Peak

AMP-

PNP+CP ADP+CP

AMP-

CPP+CP AMP+CP

Data Collection

Symmetry P212121 P212121 P212121 P212121 P212121 P212121 P212121 P212121 P212121

Wavelength (Å) 0.97949 1.10498 1.28248 1.73989 1.28248 0.97949 0.97949 0.97949 0.97949

a 46.3 46.4 46.6 46.5 46.5 46.3 46.4 46.4 46.4

b 77.7 78.2 77.5 78.1 78.3 75.0 77.9 77.7 75.6

c (Å) 199.9 200.7 200.6 200.4 200.8 201.3 200.5 200.6 200.7

Number of reflections 169,629 86,999 265,256 76,635 95,601 256,814 387,673 161,878 186,262

Number of unique

reflections

46,522 18,652 44,061 29,433 29,549 54,251 62,057 37,601 50,071

Resolution 50–2.05

(2.09–2.05)

50–2.8

(2.85–2.8)

50–2.09

(2.13–2.09)

50–2.4

(2.44–2.4)

50–2.4

(2.44–2.4)

50–1.92

(1.95–1.92)

50–1.86

(1.89–1.86)

50–2.20

(2.24–2.20)

50–1.92

(1.95–1.92)

Redundancy 3.8 (2.6) 4.8 (4.1) 6.2 (3.1) 3.2 (3.0) 3.5 (3.2) 5.6 (4.2) 6.3 (4.8) 4.6 (4.6) 3.7 (3.2)

Completeness (%) 92.5 (62.0) 97.7 (92.4) 93.9 (63.7) 82.5 (71.4) 92.0 (82.7) 85.2 (80.3) 99.4 (96.2) 94.6 (87.1) 90.6 (80.1)

<I/s(I)> 16.7 (4.1) 38.1 (15.2) 18.7 (2.2) 35.1 (11.3) 33.9 (11.3) 21.8 (1.7) 38.8 (6.9) 39.6 (13.2) 27.1 (2.7)

Rsym
a 0.063 0.05 0.112 0.104 0.041 0.094 0.066 0.053 0.05

Overall B (Å2) 17.7 39.7 26.7 31.9 29.8 24.4 15.0 21.6 21.3

Model Refinement

Number of protein atoms 4,945 4,934 4,938 5,051 4,969 4,929

Number of solvent atoms 644 414 602 719 341 447

Number of ions 4 4 4 4 4 4

Rcryst
a 0.159 0.154 0.203 0.159 0.162 0.177

Rfree 0.206 0.233 0.259 0.202 0.214 0.225

Geometry

Rms bonds (Å) 0.016 0.021 0.018 0.013 0.019 0.016

Rms angles (�) 1.57 1.85 1.83 1.39 1.67 1.65

PDB ID code 3TSP 3TSQ 3TSU 3TTC 3TTD 3TTF
aRmerge =ShklSijIi(hkl)� < I(hkl)>j/ShklSiIi(hkl), whereShkl denotes the sumover all reflections andSI is the sumover all equivalent and symmetry-related

reflections.
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HypFM3-AMP-PNP, HypFM3-ADP, HypFM3-AMP-CPP, andHypF-AMP have

been deposited in the PDB under ID codes 3TSP, 3TSQ, 3TSU, 3TTC, 3TTD,

and 3TTF, respectively.

Calorimetric Measurements

Sampleswereprepared in20mMHEPES (pH7.5) and200mMsodiumchloride.

The concentration of HypF was determined spectrophotometrically at 280 nm

using the theoretical extinction coefficient of 93,735M�1 cm�1. Concentrations

of AMP-PNP and ADP were determined spectrophotometrically at 260 nm

using the theoretical extinction coefficient of 15,400M�1 cm�1. All experiments

were performed on an iTC200 microcalorimeter (MicroCal) at 20�C. The titra-

tions were started with an initial injection of 0.8 ml and a second 3.2 ml injection,

followed by nine 4 ml injections. The cell contained 400 ml of 70 mMHypFand the

syringe contained 70 ml of 2 mM titrant solution. For all experiments, the first

injection was removed and the heat of dilution integrals were subtracted prior

to analysis with the instrument software.

Determination of Hydrogenase and Formate Hydrogenlyase

Enzyme Activities

The activity of all three hydrogenases can be determined simultaneously in

the H2 oxidation direction by using the artificial electron acceptor benzyl viol-

ogen (BV) (Ballantine and Boxer, 1985). The total hydrogenase enzyme

activity was determined as described previously (Ballantine and Boxer,

1985), except that the buffer used was 50 mM MOPS (pH 7.0). The wave-

length used was 578 nm, and an extinction coefficient of 8,600 M�1 cm�1

was assumed for reduced BV. One unit of activity corresponded to the reduc-
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tion of 1 mmol of hydrogen/min. Experiments were performed at least three

times and each time in triplicate. Data are presented as standard deviation

of the mean.

Quantitative determination of formate hydrogenlyase activity (dihydrogen

evolution), which represents the activity of Hyd-3 only, was performed as

described (Pinske and Sawers, 2010). Briefly, cultures were grown in LB

medium containing 0.8% (w/v) glucose to an OD600nm of 0.6, and 10 ml of

culture was harvested by centrifugation and resuspended in 1 ml of 50 mM

MOPS buffer (pH 7.0) and placed in a Hungate tube under an N2 atmosphere.

Aliquots of 200 ml of cells were withdrawn and introduced into a fresh small

Hungate tube. The reaction was started by adding 20 ml of 3M sodium formate,

and 200 ml of the gas phase was analyzed at six time points between 3 and

18 min by gas chromatography (GC4000; Fisons Instruments) with molecular

sieve column 5A, 80/100 mesh. Pure nitrogen was used as the carrier gas.

The amount of dihydrogen gas produced per unit time was calculated based

on a standard curve using defined concentrations of dihydrogen gas. From

the initial velocities the specific activities were calculated and are given in

mU/mg of protein.

In-Gel Staining for Hydrogenase Enzyme Activity

Nondenaturating PAGE was performed using 5% (w/v) polyacrylamide gels

(pH 8.5) and containing 0.1% (w/v) Triton X-100 (Ballantine and Boxer,

1985). Samples of crude extract (25 mg of protein) were incubated with 5%

(w/v) Triton X-100 prior to application on the gels. Hydrogenase activity stain-

ing was done as described in Ballantine and Boxer (1985), except that the

buffer used was 50 mM MOPS (pH 7.0).
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Small-Scale Purification of His-Tagged HypF Variants and

Determination of In-Gel Carbamoylphosphate Phosphatase Activity

Small amounts of His-tagged HypF variants with amino acid substitutions in

the ATP-binding sites were purified anaerobically following Soboh et al.

(2010). Briefly, 60 mg of crude cell extract (3–5 ml) in buffer A (50 mM Tris/

HCl [pH 8] and 300mMNaCl) was loaded onto 0.5ml TALONSuperflowMatrix

resin preloaded with cobalt ions and washed with a minimum of five column

volumes of buffer A. Two further wash steps were applied in which 5 mM

and then 10 mM imidazole was included in buffer A. Finally, the bound HypF

proteins were eluted by applying buffer A containing 300 mM imadazole.

The elution fractions (500 ml) containing HypF were concentrated to 20 ml using

Vivaspin 6 concentrators (Sartorius Stedim). Aliquots (10 ml) were applied

either to 10% (w/v) SDS-PAGE or 5% (w/v) native PAGE. After electrophoretic

separation of overproduced HypF proteins by native PAGE, the carbamoyl-

phosphate phosphatase activity was determined directly in the gel by

measuring the release of inorganic phosphate exactly as described (Mizuno

et al., 1989).

SUPPLEMENTAL INFORMATION

Supplemental Information includes one table and can be found with this article

online at doi:10.1016/j.str.2011.09.023.
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