1,433 research outputs found

    Correlation-induced conductance suppression at level degeneracy in a quantum dot

    Get PDF
    The large, level-dependent g-factors in an InSb nanowire quantum dot allow for the occurrence of a variety of level crossings in the dot. While we observe the standard conductance enhancement in the Coulomb blockade region for aligned levels with different spins due to the Kondo effect, a vanishing of the conductance is found at the alignment of levels with equal spins. This conductance suppression appears as a canyon cutting through the web of direct tunneling lines and an enclosed Coulomb blockade region. In the center of the Coulomb blockade region, we observe the predicted correlation-induced resonance, which now turns out to be part of a larger scenario. Our findings are supported by numerical and analytical calculations.Comment: 5 pages, 4 figure

    Sonic hedgehog guides post-crossing commissural axons both directly and indirectly by regulating Wnt activity

    Get PDF
    After midline crossing, axons of dorsolateral commissural neurons turn rostrally into the longitudinal axis of the spinal cord. In mouse, the graded distribution of Wnt4 attracts post-crossing axons rostrally. In contrast, in the chicken embryo, the graded distribution of Sonic hedgehog (Shh) guides post-crossing axons by a repulsive mechanism mediated by hedgehog-interacting protein. Based on these observations, we tested for a possible cooperation between the two types of morphogens. Indeed, we found that Wnts also act as axon guidance cues in the chicken spinal cord. However, in contrast to the mouse, Wnt transcription did not differ along the anteroposterior axis of the spinal cord. Rather, Wnt function was regulated by a gradient of the Wnt antagonist Sfrp1 (Secreted frizzled-related protein 1) that in turn was shaped by the Shh gradient. Thus, Shh affects post-crossing axon guidance both directly and indirectly by regulating Wnt function

    Current-voltage characteristic and stability in resonant-tunneling n-doped semiconductor superlattices

    Full text link
    We review the occurrence of electric-field domains in doped superlattices within a discrete drift model. A complete analysis of the construction and stability of stationary field profiles having two domains is carried out. As a consequence, we can provide a simple analytical estimation for the doping density above which stable stable domains occur. This bound may be useful for the design of superlattices exhibiting self-sustained current oscillations. Furthermore we explain why stable domains occur in superlattices in contrast to the usual Gunn diode.Comment: Tex file and 3 postscript figure

    Inflation Assisted by Heterotic Axions

    Get PDF
    We explore the possibility of obtaining inflation in weakly coupled heterotic string theory, where the model dependent axions are responsible for driving inflation. This model can be considered as a certain extrapolation of m2ϕ2m^{2}\phi^{2}-inflation, and is an attempt to explicitly realize the so called N-flation proposal in string theory. The instanton generated potential for the axions essentially has two parameters; a natural mass scale MM and the string coupling gsg_{s}. For isotropic compactifications leading to of order O(104)\mathcal{O} (10^4) axions in the four dimensional spectrum we find that with (M,gs)(MGUT,0.5)(M, g_{s})\simeq(M_{GUT}, 0.5) the observed temperature fluctuations in the CMB are correctly reproduced. We assume an initially random distribution for the vevs of the axions. The spectral index, nsn_{s}, is generically more red than for m2ϕ2m^{2}\phi^{2}-inflation. The greater the vevs, the more red the spectral index becomes. Allowing for a wide range of vevs 55 ee-foldings from the end of inflation, we find 0.946ns0.9620.946\lesssim n_{s} \lesssim 0.962. The tensor-to-scalar ratio, rr, is more sensitive to the vevs, but typically smaller than in m2ϕ2m^{2}\phi^{2}-inflation. Furthermore, in the regime where the leading order theory is valid, rr is bounded by r<0.10r < 0.10. The spectral index and the tensor-to-scalar ratio are correlated. For example, ns0.951n_{s}\simeq 0.951 corresponds to r0.036r\simeq 0.036.Comment: 1+21 pages, 2 figures, v2: Typos corrected, v3: Typos, very minor corrections, reference added, to appear in JCA

    Time--delay autosynchronization of the spatio-temporal dynamics in resonant tunneling diodes

    Full text link
    The double barrier resonant tunneling diode exhibits complex spatio-temporal patterns including low-dimensional chaos when operated in an active external circuit. We demonstrate how autosynchronization by time--delayed feedback control can be used to select and stabilize specific current density patterns in a noninvasive way. We compare the efficiency of different control schemes involving feedback in either local spatial or global degrees of freedom. The numerically obtained Floquet exponents are explained by analytical results from linear stability analysis.Comment: 10 pages, 16 figure

    Cosmology From Random Multifield Potentials

    Full text link
    We consider the statistical properties of vacua and inflationary trajectories associated with a random multifield potential. Our underlying motivation is the string landscape, but our calculations apply to general potentials. Using random matrix theory, we analyze the Hessian matrices associated with the extrema of this potential. These potentials generically have a vast number of extrema. If the cross-couplings (off-diagonal terms) are of the same order as the self-couplings (diagonal terms) we show that essentially all extrema are saddles, and the number of minima is effectively zero. Avoiding this requires the same separation of scales needed to ensure that Newton's constant is stable against radiative corrections in a string landscape. Using the central limit theorem we find that even if the number of extrema is enormous, the typical distance between extrema is still substantial -- with challenging implications for inflationary models that depend on the existence of a complicated path inside the landscape.Comment: revtex, 3 figures, 10 pages v2 refs adde

    Towards an Explicit Model of D-brane Inflation

    Full text link
    We present a detailed analysis of an explicit model of warped D-brane inflation, incorporating the effects of moduli stabilization. We consider the potential for D3-brane motion in a warped conifold background that includes fluxes and holomorphically-embedded D7-branes involved in moduli stabilization. Although the D7-branes significantly modify the inflaton potential, they do not correct the quadratic term in the potential, and hence do not cause a uniform change in the slow-roll parameter eta. Nevertheless, we present a simple example based on the Kuperstein embedding of D7-branes, z_1=constant, in which the potential can be fine-tuned to be sufficiently flat for inflation. To derive this result, it is essential to incorporate the fact that the compactification volume changes slightly as the D3-brane moves. We stress that the compactification geometry dictates certain relationships among the parameters in the inflaton Lagrangian, and these microscopic constraints impose severe restrictions on the space of possible models. We note that the shape of the final inflaton potential differs from projections given in earlier studies: in configurations where inflation occurs, it does so near an inflection point. Finally, we comment on the difficulty of making precise cosmological predictions in this scenario. This is the companion paper to arXiv:0705.3837.Comment: 68 pages, 6 figures; v2: fixed typos, added refs and clarifications; v3: expanded discussion of inflection point inflatio

    Scalar Dark Matter From Theory Space

    Get PDF
    The scalar dark matter candidate in a prototypical theory space little Higgs model is investigated. We review all details of the model pertinent to dark matter. We perform a thermal relic density calculation including couplings to the gauge and Higgs sectors of the model. We find two regions of parameter space that give acceptable dark matter abundances. The first region has a dark matter candidate with a mass of order 100 GeV, the second region has a heavy candidate with a mass greater than about 500 GeV$. The dark matter candidate in either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby constituting a WIMP (weakly interacting massive particle).Comment: 18 pages, 2 figures, version to appear in PR

    Towards a dendrochronologically refined date of the Laacher See Eruption

    Get PDF
    The precise date of the Laacher See eruption (LSE), central Europe’s largest Late Pleistocene volcanic event that occurred around 12,900 years ago, is still unknown. Here, we outline the potential of combined high-resolution dendrochronological, wood anatomical and radiocarbon (14C) measurements, to refine the age of this major Plinian eruption. Based on excavated trees that were killed during the explosive LSE and buried under its pyroclastic deposits, we describe how a firm date of the eruption might be achieved, and how the resulting temporal precision would further advance our understanding of the environmental and societal impacts of this event. Moreover, we discuss the relevance of an accurate LSE date for improving the synchronization of European terrestrial and lacustrine Late Glacial to Holocene archives, and outline how the proposed, interdisciplinary dating approach can be applied to other large, yet undated, volcanic eruptions
    corecore