102 research outputs found

    Uwagi w sprawie koniecznych zmian i uzupełnień części ogólnej projektu kodeksu karnego

    Get PDF
    Digitalizacja i deponowanie archiwalnych zeszytów RPEiS sfinansowane przez MNiSW w ramach realizacji umowy nr 541/P-DUN/201

    Kara a środki ochronne

    Get PDF
    Digitalizacja i deponowanie archiwalnych zeszytów RPEiS sfinansowane przez MNiSW w ramach realizacji umowy nr 541/P-DUN/201

    Pore size distribution of micelle-templated silicas studied by thermoporosimetry using water and n-heptane

    Get PDF
    Thermoporosimetry, i.e., DSC measurements of melting point depression of water and heptane confined in mesopores, has been used for determination the pore size distribution of several mesoporous silicas synthesized with the use of micelle templates. Porosity of these materials was additionally characterized by low-temperature nitro- gen adsorption and quasi-equilibrated thermodesorption of nonane. The pore size distributions obtained using the water thermoporosimetry were similar to those determined using the other methods, but the pore size values found for the narrow pore materials were underestimated by ca 1 nm. Too large pore sizes obtained for the wide pore silica from heptane thermoporosimetry were attributed to nonlinear dependence of the melting point depression on the reci- procal of the pore size

    Carbon dioxide capture enhanced by pre-adsorption of water and methanol in UiO-66

    Get PDF
    The rapidly rising level of carbon dioxide in the atmosphere resulting from human activity is one of the greatest environmental problems facing our civilization today. Most technologies are not yet sufficiently developed to move existing infrastructure to cleaner alternatives. Therefore, techniques for capturing carbon dioxide from emission sources may play a key role at the moment. The structure of the UiO‐66 material not only meets the requirement of high stability in contact with water vapor but through the water pre‐adsorbed in the pores, the selectivity of carbon dioxide adsorption is increased. We successfully applied the recently developed methodology for water adsorption modelling. It allowed to elucidate the influence of water on CO(2) adsorption and study the mechanism of this effect. We showed that water is adsorbed in octahedral cage and stands for promotor for CO(2) adsorption in less favorable space than tetrahedral cages. Water plays a role of a mediator of adsorption, what is a general idea of improving affinity of adsorbate. On the basis of pre‐adsorption of methanol as another polar solvent, we have shown that the adsorption sites play a key role here, and not, as previously thought, only the interaction between the solvent and quadrupole carbon dioxide. Overall, we explained the mechanism of increased CO(2) adsorption in the presence of water and methanol, as polar solvents, in the UiO‐66 pores for a potential post‐combustion carbon dioxide capture application

    The Boost of Toluene Capture in UiO-66 Triggered by Structural Defects or Air Humidity

    Get PDF
    This work aimed to investigate the adsorption of toluene in UiO-66 materials. Toluene is a volatile, aromatic organic molecule that is recognized as the main component of VOCs. These compounds are harmful to the environment as well as to living organisms. One of the materials that allows the capture of toluene is the UiO-66. A satisfactory representation of the calculated isotherm steep front and sorption capacity compared to the experiment was obtained by reducing the force field σ parameter by 5% and increasing ϵ by 5%. Average occupation profiles, which are projections of the positions of molecules during pressure increase, as well as RDFs, which are designed to determine the distance of the center of mass of the toluene molecule from organic linkers and metal clusters, respectively, made it possible to explain the mechanism of toluene adsorption on the UiO-66 material.</p

    Defect-induced tuning of polarity-dependent adsorption in hydrophobic–hydrophilic UiO-66

    Get PDF
    Structural defects in metal–organic frameworks can be exploited to tune material properties. In the case of UiO-66 material, they may change its nature from hydrophobic to hydrophilic and therefore affect the mechanism of adsorption of polar and non-polar molecules. In this work, we focused on understanding this mechanism during adsorption of molecules with different dipole moments, using the standard volumetric adsorption measurements, IR spectroscopy, DFT + D calculations, and Monte Carlo calculations. Average occupation profiles showed that polar and nonpolar molecules change their preferences for adsorption sites. Hence, defects in the structure can be used to tune the adsorption properties of the MOF as well as to control the position of the adsorbates within the micropores of UiO-66.</p
    corecore