10 research outputs found

    Effect of Monthly, High-Dose, Long-Term Vitamin D on Lung Function: A Randomized Controlled Trial.

    Get PDF
    Although observational studies suggest positive vitamin D-lung function associations, randomized trials are inconsistent. We examined effects of vitamin D supplementation on lung function. We recruited 442 adults (50-84 years, 58% male) into a randomized, double-blinded, placebo-controlled trial. Participants received, for 1.1 years (median; range = 0.9-1.5 years), either (1) vitamin D₃ 200,000 IU, followed by monthly 100,000 IU doses (n = 226); or (2) placebo monthly (n = 216). At baseline and follow-up, spirometry yielded forced expiratory volume in 1 s (FEV1; primary outcome). Mean (standard deviation) 25-hydroxyvitamin D increased from 61 (24) nmol/L at baseline to 119 (45) nmol/L at follow-up in the vitamin D group, but was unchanged in the placebo group. There were no significant lung function improvements (vitamin D versus placebo) in the total sample, vitamin D-deficient participants or asthma/chronic obstructive pulmonary disease (COPD) participants. However, among ever-smokers (n = 217), the mean (95% confidence interval) FEV1 increase in the vitamin D versus placebo was 57 (4, 109) mL (p = 0.03). FEV1 increases were larger among vitamin D-deficient ever-smokers (n = 54): 122 (8, 236) mL (p = 0.04). FEV1 improvements were largest among ever-smokers with asthma/COPD (n = 60): 160 (53, 268) mL (p = 0.004). Thus, vitamin D supplementation did not improve lung function among everyone, but benefited ever-smokers, especially those with vitamin D deficiency or asthma/COPD

    Effect of Monthly, High‐Dose, Long‐Term Vitamin D Supplementation on Central Blood Pressure Parameters: A Randomized Controlled Trial Substudy

    Get PDF
    Background: The effects of monthly, high‐dose, long‐term (≥1‐year) vitamin D supplementation on central blood pressure (BP) parameters are unknown. Methods and Results: A total of 517 adults (58% male, aged 50–84 years) were recruited into a double‐blinded, placebo‐controlled trial substudy and randomized to receive, for 1.1 years (median; range: 0.9–1.5 years), either (1) vitamin D3 200 000 IU (initial dose) followed 1 month later by monthly 100 000‐IU doses (n=256) or (2) placebo monthly (n=261). At baseline (n=517) and follow‐up (n=380), suprasystolic oscillometry was undertaken, yielding aortic BP waveforms and hemodynamic parameters. Mean deseasonalized 25‐hydroxyvitamin D increased from 66 nmol/L (SD: 24) at baseline to 122 nmol/L (SD: 42) at follow‐up in the vitamin D group, with no change in the placebo group. Despite small, nonsignificant changes in hemodynamic parameters in the total sample (primary outcome), we observed consistently favorable changes among the 150 participants with vitamin D deficiency (<50 nmol/L) at baseline. In this subgroup, mean changes in the vitamin D group (n=71) versus placebo group (n=79) were −5.3 mm Hg (95% confidence interval [CI], −11.8 to 1.3) for brachial systolic BP (P=0.11), −2.8 mm Hg (95% CI, −6.2 to 0.7) for brachial diastolic BP (P=0.12), −7.5 mm Hg (95% CI, −14.4 to −0.6) for aortic systolic BP (P=0.03), −5.7 mm Hg (95% CI, −10.8 to −0.6) for augmentation index (P=0.03), −0.3 m/s (95% CI, −0.6 to −0.1) for pulse wave velocity (P=0.02), −8.6 mm Hg (95% CI, −15.4 to −1.9) for peak reservoir pressure (P=0.01), and −3.6 mm Hg (95% CI, −6.3 to −0.8) for backward pressure amplitude (P=0.01). Conclusions: Monthly, high‐dose, 1‐year vitamin D supplementation lowered central BP parameters among adults with vitamin D deficiency but not in the total sample. Clinical Trial Registration URL: http://www.anzctr.org.au. Unique identifier: ACTRN12611000402943
    corecore