2 research outputs found

    Competitive environments sustain costly altruism with negligible assortment of interactions

    Get PDF
    Competition hinders the evolution of altruism amongst kin when beneficiaries gain at the expense of competing relatives. Altruism is consequently deemed to require stronger kin selection, or trait-selected synergies, or elastic population regulation, to counter this effect. Here we contest the view that competition puts any such demands on altruism. In ecologically realistic scenarios, competition influences both altruism and defection. We show how environments that pit defectors against each other allow strong altruism to evolve even in populations with negligible kin structure and no synergies. Competition amongst defectors presents relative advantages to altruism in the simplest games between altruists and defectors, and the most generic models of altruistic phenotypes or genotypes invading non-altruistic populations under inelastic density regulation. Given the widespread inevitability of competition, selection will often favour altruism because its alternatives provide lower fitness. Strong competition amongst defectors nevertheless undermines altruism, by facilitating invasion of unrelated beneficiaries as parasites

    The evolution of living beings started with prokaryotes and in interaction with prokaryotes

    No full text
    In natural world, no organism exists in absolute isolation, and thus every organism must interact with the environment and other organisms. Next-generation sequencing technologies are increasingly revealing that most of the cells in the environment resist cultivation in the laboratory and several prokaryotic divisions have no known cultivated representatives. Based on this, we hypothesize that species that live together in the same ecosystem are more or less dependent upon each other and are very large in diversity and number, outnumbering those that can be isolated in single-strain laboratory culture. In natural environments, bacteria and archaea interact with other organisms (viruses, protists, fungi, animals, plants, and human) in complex ecological networks, resulting in positive, negative, or no effect on one or another of the interacting partners. These interactions are sources of ecological forces such as competitive exclusion, niche partitioning, ecological adaptation, or horizontal gene transfers, which shape the biological evolution. In this chapter, we review the biological interactions involving prokaryotes in natural ecosystems, including plant, animal, and human microbiota, and give an overview of the insights into the evolution of living beings. We conclude that studies of biological interactions, including multipartite interactions, are sources of novel knowledge related to the biodiversity of living things, the functioning of ecosystems, the evolution of the cellular world, and the ecosystem services to the living beings
    corecore