372 research outputs found

    Epithelial-immune cell interplay in primary Sjogren syndrome salivary gland pathogenesis

    Get PDF
    In primary Sjogren syndrome (pSS), the function of the salivary glands is often considerably reduced. Multiple innate immune pathways are likely dysregulated in the salivary gland epithelium in pSS, including the nuclear factor-kappa B pathway, the inflammasome and interferon signalling. The ductal cells of the salivary gland in pSS are characteristically surrounded by a CD4(+) T cell-rich and B cell-rich infiltrate, implying a degree of communication between epithelial cells and immune cells. B cell infiltrates within the ducts can initiate the development of lymphoepithelial lesions, including basal ductal cell hyperplasia. Vice versa, the epithelium provides chronic activation signals to the glandular B cell fraction. This continuous stimulation might ultimately drive the development of mucosa-associated lymphoid tissue lymphoma. This Review discusses changes in the cells of the salivary gland epithelium in pSS (including acinar, ductal and progenitor cells), and the proposed interplay of these cells with environmental stimuli and the immune system. Current therapeutic options are insufficient to address both lymphocytic infiltration and salivary gland dysfunction. Successful rescue of salivary gland function in pSS will probably demand a multimodal therapeutic approach and an appreciation of the complicity of the salivary gland epithelium in the development of pSS. Salivary gland dysfunction is an important characteristic of primary Sjogren syndrome (pSS). In this Review, the authors discuss various epithelial abnormalities in pSS and the mechanisms by which epithelial cell-immune cell interactions contribute to disease development and progression

    Mapping land use changes resulting from biofuel production and the effect of mitigation measures

    Get PDF
    Many of the sustainability concerns of bioenergy are related to direct or indirect land use change (LUC) resulting from bioenergy feedstock production. The environmental and socio-economic impacts of LUC highly depend on the site-specific biophysical and socio-economic conditions. The objective of this study is to spatiotemporally assess the potential LUC dynamics resulting from an increased biofuel demand, the related greenhouse gas (GHG) emissions, and the potential effect of LUC mitigation measures. This assessment is demonstrated for LUC dynamics in Brazil towards 2030, considering an increase in the global demand for bioethanol as well as other agricultural commodities. The potential effects of three LUC mitigation measures (increased agricultural productivity, shift to second-generation ethanol, and strict conservation policies) are evaluated by using a scenario approach. The novel modelling framework developed consists of the global Computable General Equilibrium model MAGNET, the spatiotemporal land use allocation model PLUC, and a GIS-based carbon module. The modelling simulations illustrate where LUC as a result of an increased global ethanol demand (+26x10(9)L ethanol production in Brazil) is likely to occur. When no measures are taken, sugar cane production is projected to expand mostly at the expense of agricultural land which subsequently leads to the loss of natural vegetation (natural forest and grass and shrubland) in the Cerrado and Amazon. The related losses of above and below ground biomass and soil organic carbon result in the average emission of 26gCO(2-)eq/MJbioethanol. All LUC mitigation measures show potential to reduce the loss of natural vegetation (18%-96%) as well as the LUC-related GHG emissions (7%-60%). Although there are several uncertainties regarding the exact location and magnitude of LUC and related GHG emissions, this study shows that the implementation of LUC mitigation measures could have a substantial contribution to the reduction of LUC-related emissions of bioethanol. However, an integrated approach targeting all land uses is required to obtain substantial and sustained LUC-related GHG emission reductions in general

    Dentin dysplasia type I: Five cases within one family

    No full text
    Five cases of dentin dysplasia type I within one family are described. Clinically and radiologically, such patients are characterized by a delayed eruption pattern, opacity of the incisional margins, hypermobility of the teeth, short and defective roots, and obliterated pulp chambers. A conservative attitude toward the treatment of common conditions in dentin dysplasia type I favors the preservation of a vulnerable dentition
    corecore